LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cla_hercond_x()

real function cla_hercond_x ( character  uplo,
integer  n,
complex, dimension( lda, * )  a,
integer  lda,
complex, dimension( ldaf, * )  af,
integer  ldaf,
integer, dimension( * )  ipiv,
complex, dimension( * )  x,
integer  info,
complex, dimension( * )  work,
real, dimension( * )  rwork 
)

CLA_HERCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian indefinite matrices.

Download CLA_HERCOND_X + dependencies [TGZ] [ZIP] [TXT]

Purpose:
    CLA_HERCOND_X computes the infinity norm condition number of
    op(A) * diag(X) where X is a COMPLEX vector.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
       = 'U':  Upper triangle of A is stored;
       = 'L':  Lower triangle of A is stored.
[in]N
          N is INTEGER
     The number of linear equations, i.e., the order of the
     matrix A.  N >= 0.
[in]A
          A is COMPLEX array, dimension (LDA,N)
     On entry, the N-by-N matrix A.
[in]LDA
          LDA is INTEGER
     The leading dimension of the array A.  LDA >= max(1,N).
[in]AF
          AF is COMPLEX array, dimension (LDAF,N)
     The block diagonal matrix D and the multipliers used to
     obtain the factor U or L as computed by CHETRF.
[in]LDAF
          LDAF is INTEGER
     The leading dimension of the array AF.  LDAF >= max(1,N).
[in]IPIV
          IPIV is INTEGER array, dimension (N)
     Details of the interchanges and the block structure of D
     as determined by CHETRF.
[in]X
          X is COMPLEX array, dimension (N)
     The vector X in the formula op(A) * diag(X).
[out]INFO
          INFO is INTEGER
       = 0:  Successful exit.
     i > 0:  The ith argument is invalid.
[out]WORK
          WORK is COMPLEX array, dimension (2*N).
     Workspace.
[out]RWORK
          RWORK is REAL array, dimension (N).
     Workspace.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 129 of file cla_hercond_x.f.

131*
132* -- LAPACK computational routine --
133* -- LAPACK is a software package provided by Univ. of Tennessee, --
134* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
135*
136* .. Scalar Arguments ..
137 CHARACTER UPLO
138 INTEGER N, LDA, LDAF, INFO
139* ..
140* .. Array Arguments ..
141 INTEGER IPIV( * )
142 COMPLEX A( LDA, * ), AF( LDAF, * ), WORK( * ), X( * )
143 REAL RWORK( * )
144* ..
145*
146* =====================================================================
147*
148* .. Local Scalars ..
149 INTEGER KASE, I, J
150 REAL AINVNM, ANORM, TMP
151 LOGICAL UP, UPPER
152 COMPLEX ZDUM
153* ..
154* .. Local Arrays ..
155 INTEGER ISAVE( 3 )
156* ..
157* .. External Functions ..
158 LOGICAL LSAME
159 EXTERNAL lsame
160* ..
161* .. External Subroutines ..
162 EXTERNAL clacn2, chetrs, xerbla
163* ..
164* .. Intrinsic Functions ..
165 INTRINSIC abs, max
166* ..
167* .. Statement Functions ..
168 REAL CABS1
169* ..
170* .. Statement Function Definitions ..
171 cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
172* ..
173* .. Executable Statements ..
174*
175 cla_hercond_x = 0.0e+0
176*
177 info = 0
178 upper = lsame( uplo, 'U' )
179 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
180 info = -1
181 ELSE IF ( n.LT.0 ) THEN
182 info = -2
183 ELSE IF( lda.LT.max( 1, n ) ) THEN
184 info = -4
185 ELSE IF( ldaf.LT.max( 1, n ) ) THEN
186 info = -6
187 END IF
188 IF( info.NE.0 ) THEN
189 CALL xerbla( 'CLA_HERCOND_X', -info )
190 RETURN
191 END IF
192 up = .false.
193 IF ( lsame( uplo, 'U' ) ) up = .true.
194*
195* Compute norm of op(A)*op2(C).
196*
197 anorm = 0.0
198 IF ( up ) THEN
199 DO i = 1, n
200 tmp = 0.0e+0
201 DO j = 1, i
202 tmp = tmp + cabs1( a( j, i ) * x( j ) )
203 END DO
204 DO j = i+1, n
205 tmp = tmp + cabs1( a( i, j ) * x( j ) )
206 END DO
207 rwork( i ) = tmp
208 anorm = max( anorm, tmp )
209 END DO
210 ELSE
211 DO i = 1, n
212 tmp = 0.0e+0
213 DO j = 1, i
214 tmp = tmp + cabs1( a( i, j ) * x( j ) )
215 END DO
216 DO j = i+1, n
217 tmp = tmp + cabs1( a( j, i ) * x( j ) )
218 END DO
219 rwork( i ) = tmp
220 anorm = max( anorm, tmp )
221 END DO
222 END IF
223*
224* Quick return if possible.
225*
226 IF( n.EQ.0 ) THEN
227 cla_hercond_x = 1.0e+0
228 RETURN
229 ELSE IF( anorm .EQ. 0.0e+0 ) THEN
230 RETURN
231 END IF
232*
233* Estimate the norm of inv(op(A)).
234*
235 ainvnm = 0.0e+0
236*
237 kase = 0
238 10 CONTINUE
239 CALL clacn2( n, work( n+1 ), work, ainvnm, kase, isave )
240 IF( kase.NE.0 ) THEN
241 IF( kase.EQ.2 ) THEN
242*
243* Multiply by R.
244*
245 DO i = 1, n
246 work( i ) = work( i ) * rwork( i )
247 END DO
248*
249 IF ( up ) THEN
250 CALL chetrs( 'U', n, 1, af, ldaf, ipiv,
251 $ work, n, info )
252 ELSE
253 CALL chetrs( 'L', n, 1, af, ldaf, ipiv,
254 $ work, n, info )
255 ENDIF
256*
257* Multiply by inv(X).
258*
259 DO i = 1, n
260 work( i ) = work( i ) / x( i )
261 END DO
262 ELSE
263*
264* Multiply by inv(X**H).
265*
266 DO i = 1, n
267 work( i ) = work( i ) / x( i )
268 END DO
269*
270 IF ( up ) THEN
271 CALL chetrs( 'U', n, 1, af, ldaf, ipiv,
272 $ work, n, info )
273 ELSE
274 CALL chetrs( 'L', n, 1, af, ldaf, ipiv,
275 $ work, n, info )
276 END IF
277*
278* Multiply by R.
279*
280 DO i = 1, n
281 work( i ) = work( i ) * rwork( i )
282 END DO
283 END IF
284 GO TO 10
285 END IF
286*
287* Compute the estimate of the reciprocal condition number.
288*
289 IF( ainvnm .NE. 0.0e+0 )
290 $ cla_hercond_x = 1.0e+0 / ainvnm
291*
292 RETURN
293*
294* End of CLA_HERCOND_X
295*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine chetrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
CHETRS
Definition chetrs.f:120
real function cla_hercond_x(uplo, n, a, lda, af, ldaf, ipiv, x, info, work, rwork)
CLA_HERCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian indefinite m...
subroutine clacn2(n, v, x, est, kase, isave)
CLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition clacn2.f:133
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: