130 $ info, work, rwork )
138 INTEGER n, lda, ldaf, info
142 COMPLEX a( lda, * ), af( ldaf, * ), work( * ), x( * )
150 REAL ainvnm, anorm, tmp
171 cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
178 upper =
lsame( uplo,
'U' )
179 IF( .NOT.upper .AND. .NOT.
lsame( uplo,
'L' ) )
THEN
181 ELSE IF ( n.LT.0 )
THEN
183 ELSE IF( lda.LT.max( 1, n ) )
THEN
185 ELSE IF( ldaf.LT.max( 1, n ) )
THEN
189 CALL xerbla(
'CLA_HERCOND_X', -info )
193 IF (
lsame( uplo,
'U' ) ) up = .true.
202 tmp = tmp + cabs1( a( j, i ) * x( j ) )
205 tmp = tmp + cabs1( a( i, j ) * x( j ) )
208 anorm = max( anorm, tmp )
214 tmp = tmp + cabs1( a( i, j ) * x( j ) )
217 tmp = tmp + cabs1( a( j, i ) * x( j ) )
220 anorm = max( anorm, tmp )
229 ELSE IF( anorm .EQ. 0.0e+0 )
THEN
239 CALL clacn2( n, work( n+1 ), work, ainvnm, kase, isave )
246 work( i ) = work( i ) * rwork( i )
250 CALL chetrs(
'U', n, 1, af, ldaf, ipiv,
253 CALL chetrs(
'L', n, 1, af, ldaf, ipiv,
260 work( i ) = work( i ) / x( i )
267 work( i ) = work( i ) / x( i )
271 CALL chetrs(
'U', n, 1, af, ldaf, ipiv,
274 CALL chetrs(
'L', n, 1, af, ldaf, ipiv,
281 work( i ) = work( i ) * rwork( i )
289 IF( ainvnm .NE. 0.0e+0 )
subroutine xerbla(srname, info)
subroutine chetrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
CHETRS
real function cla_hercond_x(uplo, n, a, lda, af, ldaf, ipiv, x, info, work, rwork)
CLA_HERCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian indefinite m...
subroutine clacn2(n, v, x, est, kase, isave)
CLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
logical function lsame(ca, cb)
LSAME