LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cla_hercond_x.f
Go to the documentation of this file.
1*> \brief \b CLA_HERCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian indefinite matrices.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CLA_HERCOND_X + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_hercond_x.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_hercond_x.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_hercond_x.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* REAL FUNCTION CLA_HERCOND_X( UPLO, N, A, LDA, AF, LDAF, IPIV, X,
22* INFO, WORK, RWORK )
23*
24* .. Scalar Arguments ..
25* CHARACTER UPLO
26* INTEGER N, LDA, LDAF, INFO
27* ..
28* .. Array Arguments ..
29* INTEGER IPIV( * )
30* COMPLEX A( LDA, * ), AF( LDAF, * ), WORK( * ), X( * )
31* REAL RWORK( * )
32* ..
33*
34*
35*> \par Purpose:
36* =============
37*>
38*> \verbatim
39*>
40*> CLA_HERCOND_X computes the infinity norm condition number of
41*> op(A) * diag(X) where X is a COMPLEX vector.
42*> \endverbatim
43*
44* Arguments:
45* ==========
46*
47*> \param[in] UPLO
48*> \verbatim
49*> UPLO is CHARACTER*1
50*> = 'U': Upper triangle of A is stored;
51*> = 'L': Lower triangle of A is stored.
52*> \endverbatim
53*>
54*> \param[in] N
55*> \verbatim
56*> N is INTEGER
57*> The number of linear equations, i.e., the order of the
58*> matrix A. N >= 0.
59*> \endverbatim
60*>
61*> \param[in] A
62*> \verbatim
63*> A is COMPLEX array, dimension (LDA,N)
64*> On entry, the N-by-N matrix A.
65*> \endverbatim
66*>
67*> \param[in] LDA
68*> \verbatim
69*> LDA is INTEGER
70*> The leading dimension of the array A. LDA >= max(1,N).
71*> \endverbatim
72*>
73*> \param[in] AF
74*> \verbatim
75*> AF is COMPLEX array, dimension (LDAF,N)
76*> The block diagonal matrix D and the multipliers used to
77*> obtain the factor U or L as computed by CHETRF.
78*> \endverbatim
79*>
80*> \param[in] LDAF
81*> \verbatim
82*> LDAF is INTEGER
83*> The leading dimension of the array AF. LDAF >= max(1,N).
84*> \endverbatim
85*>
86*> \param[in] IPIV
87*> \verbatim
88*> IPIV is INTEGER array, dimension (N)
89*> Details of the interchanges and the block structure of D
90*> as determined by CHETRF.
91*> \endverbatim
92*>
93*> \param[in] X
94*> \verbatim
95*> X is COMPLEX array, dimension (N)
96*> The vector X in the formula op(A) * diag(X).
97*> \endverbatim
98*>
99*> \param[out] INFO
100*> \verbatim
101*> INFO is INTEGER
102*> = 0: Successful exit.
103*> i > 0: The ith argument is invalid.
104*> \endverbatim
105*>
106*> \param[out] WORK
107*> \verbatim
108*> WORK is COMPLEX array, dimension (2*N).
109*> Workspace.
110*> \endverbatim
111*>
112*> \param[out] RWORK
113*> \verbatim
114*> RWORK is REAL array, dimension (N).
115*> Workspace.
116*> \endverbatim
117*
118* Authors:
119* ========
120*
121*> \author Univ. of Tennessee
122*> \author Univ. of California Berkeley
123*> \author Univ. of Colorado Denver
124*> \author NAG Ltd.
125*
126*> \ingroup la_hercond
127*
128* =====================================================================
129 REAL function cla_hercond_x( uplo, n, a, lda, af, ldaf, ipiv, x,
130 $ info, work, rwork )
131*
132* -- LAPACK computational routine --
133* -- LAPACK is a software package provided by Univ. of Tennessee, --
134* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
135*
136* .. Scalar Arguments ..
137 CHARACTER uplo
138 INTEGER n, lda, ldaf, info
139* ..
140* .. Array Arguments ..
141 INTEGER ipiv( * )
142 COMPLEX a( lda, * ), af( ldaf, * ), work( * ), x( * )
143 REAL rwork( * )
144* ..
145*
146* =====================================================================
147*
148* .. Local Scalars ..
149 INTEGER kase, i, j
150 REAL ainvnm, anorm, tmp
151 LOGICAL up, upper
152 COMPLEX zdum
153* ..
154* .. Local Arrays ..
155 INTEGER isave( 3 )
156* ..
157* .. External Functions ..
158 LOGICAL lsame
159 EXTERNAL lsame
160* ..
161* .. External Subroutines ..
162 EXTERNAL clacn2, chetrs, xerbla
163* ..
164* .. Intrinsic Functions ..
165 INTRINSIC abs, max
166* ..
167* .. Statement Functions ..
168 REAL cabs1
169* ..
170* .. Statement Function Definitions ..
171 cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
172* ..
173* .. Executable Statements ..
174*
175 cla_hercond_x = 0.0e+0
176*
177 info = 0
178 upper = lsame( uplo, 'U' )
179 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
180 info = -1
181 ELSE IF ( n.LT.0 ) THEN
182 info = -2
183 ELSE IF( lda.LT.max( 1, n ) ) THEN
184 info = -4
185 ELSE IF( ldaf.LT.max( 1, n ) ) THEN
186 info = -6
187 END IF
188 IF( info.NE.0 ) THEN
189 CALL xerbla( 'CLA_HERCOND_X', -info )
190 RETURN
191 END IF
192 up = .false.
193 IF ( lsame( uplo, 'U' ) ) up = .true.
194*
195* Compute norm of op(A)*op2(C).
196*
197 anorm = 0.0
198 IF ( up ) THEN
199 DO i = 1, n
200 tmp = 0.0e+0
201 DO j = 1, i
202 tmp = tmp + cabs1( a( j, i ) * x( j ) )
203 END DO
204 DO j = i+1, n
205 tmp = tmp + cabs1( a( i, j ) * x( j ) )
206 END DO
207 rwork( i ) = tmp
208 anorm = max( anorm, tmp )
209 END DO
210 ELSE
211 DO i = 1, n
212 tmp = 0.0e+0
213 DO j = 1, i
214 tmp = tmp + cabs1( a( i, j ) * x( j ) )
215 END DO
216 DO j = i+1, n
217 tmp = tmp + cabs1( a( j, i ) * x( j ) )
218 END DO
219 rwork( i ) = tmp
220 anorm = max( anorm, tmp )
221 END DO
222 END IF
223*
224* Quick return if possible.
225*
226 IF( n.EQ.0 ) THEN
227 cla_hercond_x = 1.0e+0
228 RETURN
229 ELSE IF( anorm .EQ. 0.0e+0 ) THEN
230 RETURN
231 END IF
232*
233* Estimate the norm of inv(op(A)).
234*
235 ainvnm = 0.0e+0
236*
237 kase = 0
238 10 CONTINUE
239 CALL clacn2( n, work( n+1 ), work, ainvnm, kase, isave )
240 IF( kase.NE.0 ) THEN
241 IF( kase.EQ.2 ) THEN
242*
243* Multiply by R.
244*
245 DO i = 1, n
246 work( i ) = work( i ) * rwork( i )
247 END DO
248*
249 IF ( up ) THEN
250 CALL chetrs( 'U', n, 1, af, ldaf, ipiv,
251 $ work, n, info )
252 ELSE
253 CALL chetrs( 'L', n, 1, af, ldaf, ipiv,
254 $ work, n, info )
255 ENDIF
256*
257* Multiply by inv(X).
258*
259 DO i = 1, n
260 work( i ) = work( i ) / x( i )
261 END DO
262 ELSE
263*
264* Multiply by inv(X**H).
265*
266 DO i = 1, n
267 work( i ) = work( i ) / x( i )
268 END DO
269*
270 IF ( up ) THEN
271 CALL chetrs( 'U', n, 1, af, ldaf, ipiv,
272 $ work, n, info )
273 ELSE
274 CALL chetrs( 'L', n, 1, af, ldaf, ipiv,
275 $ work, n, info )
276 END IF
277*
278* Multiply by R.
279*
280 DO i = 1, n
281 work( i ) = work( i ) * rwork( i )
282 END DO
283 END IF
284 GO TO 10
285 END IF
286*
287* Compute the estimate of the reciprocal condition number.
288*
289 IF( ainvnm .NE. 0.0e+0 )
290 $ cla_hercond_x = 1.0e+0 / ainvnm
291*
292 RETURN
293*
294* End of CLA_HERCOND_X
295*
296 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine chetrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
CHETRS
Definition chetrs.f:120
real function cla_hercond_x(uplo, n, a, lda, af, ldaf, ipiv, x, info, work, rwork)
CLA_HERCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian indefinite m...
subroutine clacn2(n, v, x, est, kase, isave)
CLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition clacn2.f:133
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48