LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zla_syrcond_c()

double precision function zla_syrcond_c ( character  uplo,
integer  n,
complex*16, dimension( lda, * )  a,
integer  lda,
complex*16, dimension( ldaf, * )  af,
integer  ldaf,
integer, dimension( * )  ipiv,
double precision, dimension( * )  c,
logical  capply,
integer  info,
complex*16, dimension( * )  work,
double precision, dimension( * )  rwork 
)

ZLA_SYRCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for symmetric indefinite matrices.

Download ZLA_SYRCOND_C + dependencies [TGZ] [ZIP] [TXT]

Purpose:
    ZLA_SYRCOND_C Computes the infinity norm condition number of
    op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
       = 'U':  Upper triangle of A is stored;
       = 'L':  Lower triangle of A is stored.
[in]N
          N is INTEGER
     The number of linear equations, i.e., the order of the
     matrix A.  N >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
     On entry, the N-by-N matrix A
[in]LDA
          LDA is INTEGER
     The leading dimension of the array A.  LDA >= max(1,N).
[in]AF
          AF is COMPLEX*16 array, dimension (LDAF,N)
     The block diagonal matrix D and the multipliers used to
     obtain the factor U or L as computed by ZSYTRF.
[in]LDAF
          LDAF is INTEGER
     The leading dimension of the array AF.  LDAF >= max(1,N).
[in]IPIV
          IPIV is INTEGER array, dimension (N)
     Details of the interchanges and the block structure of D
     as determined by ZSYTRF.
[in]C
          C is DOUBLE PRECISION array, dimension (N)
     The vector C in the formula op(A) * inv(diag(C)).
[in]CAPPLY
          CAPPLY is LOGICAL
     If .TRUE. then access the vector C in the formula above.
[out]INFO
          INFO is INTEGER
       = 0:  Successful exit.
     i > 0:  The ith argument is invalid.
[out]WORK
          WORK is COMPLEX*16 array, dimension (2*N).
     Workspace.
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (N).
     Workspace.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 137 of file zla_syrcond_c.f.

140*
141* -- LAPACK computational routine --
142* -- LAPACK is a software package provided by Univ. of Tennessee, --
143* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
144*
145* .. Scalar Arguments ..
146 CHARACTER UPLO
147 LOGICAL CAPPLY
148 INTEGER N, LDA, LDAF, INFO
149* ..
150* .. Array Arguments ..
151 INTEGER IPIV( * )
152 COMPLEX*16 A( LDA, * ), AF( LDAF, * ), WORK( * )
153 DOUBLE PRECISION C( * ), RWORK( * )
154* ..
155*
156* =====================================================================
157*
158* .. Local Scalars ..
159 INTEGER KASE
160 DOUBLE PRECISION AINVNM, ANORM, TMP
161 INTEGER I, J
162 LOGICAL UP, UPPER
163 COMPLEX*16 ZDUM
164* ..
165* .. Local Arrays ..
166 INTEGER ISAVE( 3 )
167* ..
168* .. External Functions ..
169 LOGICAL LSAME
170 EXTERNAL lsame
171* ..
172* .. External Subroutines ..
173 EXTERNAL zlacn2, zsytrs, xerbla
174* ..
175* .. Intrinsic Functions ..
176 INTRINSIC abs, max
177* ..
178* .. Statement Functions ..
179 DOUBLE PRECISION CABS1
180* ..
181* .. Statement Function Definitions ..
182 cabs1( zdum ) = abs( dble( zdum ) ) + abs( dimag( zdum ) )
183* ..
184* .. Executable Statements ..
185*
186 zla_syrcond_c = 0.0d+0
187*
188 info = 0
189 upper = lsame( uplo, 'U' )
190 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
191 info = -1
192 ELSE IF( n.LT.0 ) THEN
193 info = -2
194 ELSE IF( lda.LT.max( 1, n ) ) THEN
195 info = -4
196 ELSE IF( ldaf.LT.max( 1, n ) ) THEN
197 info = -6
198 END IF
199 IF( info.NE.0 ) THEN
200 CALL xerbla( 'ZLA_SYRCOND_C', -info )
201 RETURN
202 END IF
203 up = .false.
204 IF ( lsame( uplo, 'U' ) ) up = .true.
205*
206* Compute norm of op(A)*op2(C).
207*
208 anorm = 0.0d+0
209 IF ( up ) THEN
210 DO i = 1, n
211 tmp = 0.0d+0
212 IF ( capply ) THEN
213 DO j = 1, i
214 tmp = tmp + cabs1( a( j, i ) ) / c( j )
215 END DO
216 DO j = i+1, n
217 tmp = tmp + cabs1( a( i, j ) ) / c( j )
218 END DO
219 ELSE
220 DO j = 1, i
221 tmp = tmp + cabs1( a( j, i ) )
222 END DO
223 DO j = i+1, n
224 tmp = tmp + cabs1( a( i, j ) )
225 END DO
226 END IF
227 rwork( i ) = tmp
228 anorm = max( anorm, tmp )
229 END DO
230 ELSE
231 DO i = 1, n
232 tmp = 0.0d+0
233 IF ( capply ) THEN
234 DO j = 1, i
235 tmp = tmp + cabs1( a( i, j ) ) / c( j )
236 END DO
237 DO j = i+1, n
238 tmp = tmp + cabs1( a( j, i ) ) / c( j )
239 END DO
240 ELSE
241 DO j = 1, i
242 tmp = tmp + cabs1( a( i, j ) )
243 END DO
244 DO j = i+1, n
245 tmp = tmp + cabs1( a( j, i ) )
246 END DO
247 END IF
248 rwork( i ) = tmp
249 anorm = max( anorm, tmp )
250 END DO
251 END IF
252*
253* Quick return if possible.
254*
255 IF( n.EQ.0 ) THEN
256 zla_syrcond_c = 1.0d+0
257 RETURN
258 ELSE IF( anorm .EQ. 0.0d+0 ) THEN
259 RETURN
260 END IF
261*
262* Estimate the norm of inv(op(A)).
263*
264 ainvnm = 0.0d+0
265*
266 kase = 0
267 10 CONTINUE
268 CALL zlacn2( n, work( n+1 ), work, ainvnm, kase, isave )
269 IF( kase.NE.0 ) THEN
270 IF( kase.EQ.2 ) THEN
271*
272* Multiply by R.
273*
274 DO i = 1, n
275 work( i ) = work( i ) * rwork( i )
276 END DO
277*
278 IF ( up ) THEN
279 CALL zsytrs( 'U', n, 1, af, ldaf, ipiv,
280 $ work, n, info )
281 ELSE
282 CALL zsytrs( 'L', n, 1, af, ldaf, ipiv,
283 $ work, n, info )
284 ENDIF
285*
286* Multiply by inv(C).
287*
288 IF ( capply ) THEN
289 DO i = 1, n
290 work( i ) = work( i ) * c( i )
291 END DO
292 END IF
293 ELSE
294*
295* Multiply by inv(C**T).
296*
297 IF ( capply ) THEN
298 DO i = 1, n
299 work( i ) = work( i ) * c( i )
300 END DO
301 END IF
302*
303 IF ( up ) THEN
304 CALL zsytrs( 'U', n, 1, af, ldaf, ipiv,
305 $ work, n, info )
306 ELSE
307 CALL zsytrs( 'L', n, 1, af, ldaf, ipiv,
308 $ work, n, info )
309 END IF
310*
311* Multiply by R.
312*
313 DO i = 1, n
314 work( i ) = work( i ) * rwork( i )
315 END DO
316 END IF
317 GO TO 10
318 END IF
319*
320* Compute the estimate of the reciprocal condition number.
321*
322 IF( ainvnm .NE. 0.0d+0 )
323 $ zla_syrcond_c = 1.0d+0 / ainvnm
324*
325 RETURN
326*
327* End of ZLA_SYRCOND_C
328*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zsytrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
ZSYTRS
Definition zsytrs.f:120
double precision function zla_syrcond_c(uplo, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork)
ZLA_SYRCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for symmetric indefin...
subroutine zlacn2(n, v, x, est, kase, isave)
ZLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition zlacn2.f:133
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: