138 $ LDAF, IPIV, C, CAPPLY,
139 $ INFO, WORK, RWORK )
148 INTEGER n, lda, ldaf, info
152 COMPLEX*16 a( lda, * ), af( ldaf, * ), work( * )
153 DOUBLE PRECISION c( * ), rwork( * )
160 DOUBLE PRECISION ainvnm, anorm, tmp
179 DOUBLE PRECISION cabs1
182 cabs1( zdum ) = abs( dble( zdum ) ) + abs( dimag( zdum ) )
189 upper =
lsame( uplo,
'U' )
190 IF( .NOT.upper .AND. .NOT.
lsame( uplo,
'L' ) )
THEN
192 ELSE IF( n.LT.0 )
THEN
194 ELSE IF( lda.LT.max( 1, n ) )
THEN
196 ELSE IF( ldaf.LT.max( 1, n ) )
THEN
200 CALL xerbla(
'ZLA_SYRCOND_C', -info )
204 IF (
lsame( uplo,
'U' ) ) up = .true.
214 tmp = tmp + cabs1( a( j, i ) ) / c( j )
217 tmp = tmp + cabs1( a( i, j ) ) / c( j )
221 tmp = tmp + cabs1( a( j, i ) )
224 tmp = tmp + cabs1( a( i, j ) )
228 anorm = max( anorm, tmp )
235 tmp = tmp + cabs1( a( i, j ) ) / c( j )
238 tmp = tmp + cabs1( a( j, i ) ) / c( j )
242 tmp = tmp + cabs1( a( i, j ) )
245 tmp = tmp + cabs1( a( j, i ) )
249 anorm = max( anorm, tmp )
258 ELSE IF( anorm .EQ. 0.0d+0 )
THEN
268 CALL zlacn2( n, work( n+1 ), work, ainvnm, kase, isave )
275 work( i ) = work( i ) * rwork( i )
279 CALL zsytrs(
'U', n, 1, af, ldaf, ipiv,
282 CALL zsytrs(
'L', n, 1, af, ldaf, ipiv,
290 work( i ) = work( i ) * c( i )
299 work( i ) = work( i ) * c( i )
304 CALL zsytrs(
'U', n, 1, af, ldaf, ipiv,
307 CALL zsytrs(
'L', n, 1, af, ldaf, ipiv,
314 work( i ) = work( i ) * rwork( i )
322 IF( ainvnm .NE. 0.0d+0 )
subroutine xerbla(srname, info)
subroutine zsytrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
ZSYTRS
double precision function zla_syrcond_c(uplo, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork)
ZLA_SYRCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for symmetric indefin...
subroutine zlacn2(n, v, x, est, kase, isave)
ZLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
logical function lsame(ca, cb)
LSAME