LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zungl2.f
Go to the documentation of this file.
1*> \brief \b ZUNGL2 generates all or part of the unitary matrix Q from an LQ factorization determined by cgelqf (unblocked algorithm).
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZUNGL2 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zungl2.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zungl2.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zungl2.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE ZUNGL2( M, N, K, A, LDA, TAU, WORK, INFO )
22*
23* .. Scalar Arguments ..
24* INTEGER INFO, K, LDA, M, N
25* ..
26* .. Array Arguments ..
27* COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
28* ..
29*
30*
31*> \par Purpose:
32* =============
33*>
34*> \verbatim
35*>
36*> ZUNGL2 generates an m-by-n complex matrix Q with orthonormal rows,
37*> which is defined as the first m rows of a product of k elementary
38*> reflectors of order n
39*>
40*> Q = H(k)**H . . . H(2)**H H(1)**H
41*>
42*> as returned by ZGELQF.
43*> \endverbatim
44*
45* Arguments:
46* ==========
47*
48*> \param[in] M
49*> \verbatim
50*> M is INTEGER
51*> The number of rows of the matrix Q. M >= 0.
52*> \endverbatim
53*>
54*> \param[in] N
55*> \verbatim
56*> N is INTEGER
57*> The number of columns of the matrix Q. N >= M.
58*> \endverbatim
59*>
60*> \param[in] K
61*> \verbatim
62*> K is INTEGER
63*> The number of elementary reflectors whose product defines the
64*> matrix Q. M >= K >= 0.
65*> \endverbatim
66*>
67*> \param[in,out] A
68*> \verbatim
69*> A is COMPLEX*16 array, dimension (LDA,N)
70*> On entry, the i-th row must contain the vector which defines
71*> the elementary reflector H(i), for i = 1,2,...,k, as returned
72*> by ZGELQF in the first k rows of its array argument A.
73*> On exit, the m by n matrix Q.
74*> \endverbatim
75*>
76*> \param[in] LDA
77*> \verbatim
78*> LDA is INTEGER
79*> The first dimension of the array A. LDA >= max(1,M).
80*> \endverbatim
81*>
82*> \param[in] TAU
83*> \verbatim
84*> TAU is COMPLEX*16 array, dimension (K)
85*> TAU(i) must contain the scalar factor of the elementary
86*> reflector H(i), as returned by ZGELQF.
87*> \endverbatim
88*>
89*> \param[out] WORK
90*> \verbatim
91*> WORK is COMPLEX*16 array, dimension (M)
92*> \endverbatim
93*>
94*> \param[out] INFO
95*> \verbatim
96*> INFO is INTEGER
97*> = 0: successful exit
98*> < 0: if INFO = -i, the i-th argument has an illegal value
99*> \endverbatim
100*
101* Authors:
102* ========
103*
104*> \author Univ. of Tennessee
105*> \author Univ. of California Berkeley
106*> \author Univ. of Colorado Denver
107*> \author NAG Ltd.
108*
109*> \ingroup ungl2
110*
111* =====================================================================
112 SUBROUTINE zungl2( M, N, K, A, LDA, TAU, WORK, INFO )
113*
114* -- LAPACK computational routine --
115* -- LAPACK is a software package provided by Univ. of Tennessee, --
116* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
117*
118* .. Scalar Arguments ..
119 INTEGER INFO, K, LDA, M, N
120* ..
121* .. Array Arguments ..
122 COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
123* ..
124*
125* =====================================================================
126*
127* .. Parameters ..
128 COMPLEX*16 ONE, ZERO
129 parameter( one = ( 1.0d+0, 0.0d+0 ),
130 $ zero = ( 0.0d+0, 0.0d+0 ) )
131* ..
132* .. Local Scalars ..
133 INTEGER I, J, L
134* ..
135* .. External Subroutines ..
136 EXTERNAL xerbla, zlacgv, zlarf, zscal
137* ..
138* .. Intrinsic Functions ..
139 INTRINSIC dconjg, max
140* ..
141* .. Executable Statements ..
142*
143* Test the input arguments
144*
145 info = 0
146 IF( m.LT.0 ) THEN
147 info = -1
148 ELSE IF( n.LT.m ) THEN
149 info = -2
150 ELSE IF( k.LT.0 .OR. k.GT.m ) THEN
151 info = -3
152 ELSE IF( lda.LT.max( 1, m ) ) THEN
153 info = -5
154 END IF
155 IF( info.NE.0 ) THEN
156 CALL xerbla( 'ZUNGL2', -info )
157 RETURN
158 END IF
159*
160* Quick return if possible
161*
162 IF( m.LE.0 )
163 $ RETURN
164*
165 IF( k.LT.m ) THEN
166*
167* Initialise rows k+1:m to rows of the unit matrix
168*
169 DO 20 j = 1, n
170 DO 10 l = k + 1, m
171 a( l, j ) = zero
172 10 CONTINUE
173 IF( j.GT.k .AND. j.LE.m )
174 $ a( j, j ) = one
175 20 CONTINUE
176 END IF
177*
178 DO 40 i = k, 1, -1
179*
180* Apply H(i)**H to A(i:m,i:n) from the right
181*
182 IF( i.LT.n ) THEN
183 CALL zlacgv( n-i, a( i, i+1 ), lda )
184 IF( i.LT.m ) THEN
185 a( i, i ) = one
186 CALL zlarf( 'Right', m-i, n-i+1, a( i, i ), lda,
187 $ dconjg( tau( i ) ), a( i+1, i ), lda, work )
188 END IF
189 CALL zscal( n-i, -tau( i ), a( i, i+1 ), lda )
190 CALL zlacgv( n-i, a( i, i+1 ), lda )
191 END IF
192 a( i, i ) = one - dconjg( tau( i ) )
193*
194* Set A(i,1:i-1) to zero
195*
196 DO 30 l = 1, i - 1
197 a( i, l ) = zero
198 30 CONTINUE
199 40 CONTINUE
200 RETURN
201*
202* End of ZUNGL2
203*
204 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zlacgv(n, x, incx)
ZLACGV conjugates a complex vector.
Definition zlacgv.f:74
subroutine zlarf(side, m, n, v, incv, tau, c, ldc, work)
ZLARF applies an elementary reflector to a general rectangular matrix.
Definition zlarf.f:128
subroutine zscal(n, za, zx, incx)
ZSCAL
Definition zscal.f:78
subroutine zungl2(m, n, k, a, lda, tau, work, info)
ZUNGL2 generates all or part of the unitary matrix Q from an LQ factorization determined by cgelqf (u...
Definition zungl2.f:113