LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dgghrd()

subroutine dgghrd ( character compq,
character compz,
integer n,
integer ilo,
integer ihi,
double precision, dimension( lda, * ) a,
integer lda,
double precision, dimension( ldb, * ) b,
integer ldb,
double precision, dimension( ldq, * ) q,
integer ldq,
double precision, dimension( ldz, * ) z,
integer ldz,
integer info )

DGGHRD

Download DGGHRD + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> DGGHRD reduces a pair of real matrices (A,B) to generalized upper
!> Hessenberg form using orthogonal transformations, where A is a
!> general matrix and B is upper triangular.  The form of the
!> generalized eigenvalue problem is
!>    A*x = lambda*B*x,
!> and B is typically made upper triangular by computing its QR
!> factorization and moving the orthogonal matrix Q to the left side
!> of the equation.
!>
!> This subroutine simultaneously reduces A to a Hessenberg matrix H:
!>    Q**T*A*Z = H
!> and transforms B to another upper triangular matrix T:
!>    Q**T*B*Z = T
!> in order to reduce the problem to its standard form
!>    H*y = lambda*T*y
!> where y = Z**T*x.
!>
!> The orthogonal matrices Q and Z are determined as products of Givens
!> rotations.  They may either be formed explicitly, or they may be
!> postmultiplied into input matrices Q1 and Z1, so that
!>
!>      Q1 * A * Z1**T = (Q1*Q) * H * (Z1*Z)**T
!>
!>      Q1 * B * Z1**T = (Q1*Q) * T * (Z1*Z)**T
!>
!> If Q1 is the orthogonal matrix from the QR factorization of B in the
!> original equation A*x = lambda*B*x, then DGGHRD reduces the original
!> problem to generalized Hessenberg form.
!> 
Parameters
[in]COMPQ
!>          COMPQ is CHARACTER*1
!>          = 'N': do not compute Q;
!>          = 'I': Q is initialized to the unit matrix, and the
!>                 orthogonal matrix Q is returned;
!>          = 'V': Q must contain an orthogonal matrix Q1 on entry,
!>                 and the product Q1*Q is returned.
!> 
[in]COMPZ
!>          COMPZ is CHARACTER*1
!>          = 'N': do not compute Z;
!>          = 'I': Z is initialized to the unit matrix, and the
!>                 orthogonal matrix Z is returned;
!>          = 'V': Z must contain an orthogonal matrix Z1 on entry,
!>                 and the product Z1*Z is returned.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrices A and B.  N >= 0.
!> 
[in]ILO
!>          ILO is INTEGER
!> 
[in]IHI
!>          IHI is INTEGER
!>
!>          ILO and IHI mark the rows and columns of A which are to be
!>          reduced.  It is assumed that A is already upper triangular
!>          in rows and columns 1:ILO-1 and IHI+1:N.  ILO and IHI are
!>          normally set by a previous call to DGGBAL; otherwise they
!>          should be set to 1 and N respectively.
!>          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
!> 
[in,out]A
!>          A is DOUBLE PRECISION array, dimension (LDA, N)
!>          On entry, the N-by-N general matrix to be reduced.
!>          On exit, the upper triangle and the first subdiagonal of A
!>          are overwritten with the upper Hessenberg matrix H, and the
!>          rest is set to zero.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[in,out]B
!>          B is DOUBLE PRECISION array, dimension (LDB, N)
!>          On entry, the N-by-N upper triangular matrix B.
!>          On exit, the upper triangular matrix T = Q**T B Z.  The
!>          elements below the diagonal are set to zero.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[in,out]Q
!>          Q is DOUBLE PRECISION array, dimension (LDQ, N)
!>          On entry, if COMPQ = 'V', the orthogonal matrix Q1,
!>          typically from the QR factorization of B.
!>          On exit, if COMPQ='I', the orthogonal matrix Q, and if
!>          COMPQ = 'V', the product Q1*Q.
!>          Not referenced if COMPQ='N'.
!> 
[in]LDQ
!>          LDQ is INTEGER
!>          The leading dimension of the array Q.
!>          LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.
!> 
[in,out]Z
!>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
!>          On entry, if COMPZ = 'V', the orthogonal matrix Z1.
!>          On exit, if COMPZ='I', the orthogonal matrix Z, and if
!>          COMPZ = 'V', the product Z1*Z.
!>          Not referenced if COMPZ='N'.
!> 
[in]LDZ
!>          LDZ is INTEGER
!>          The leading dimension of the array Z.
!>          LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit.
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  This routine reduces A to Hessenberg and B to triangular form by
!>  an unblocked reduction, as described in _Matrix_Computations_,
!>  by Golub and Van Loan (Johns Hopkins Press.)
!> 

Definition at line 203 of file dgghrd.f.

206*
207* -- LAPACK computational routine --
208* -- LAPACK is a software package provided by Univ. of Tennessee, --
209* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
210*
211* .. Scalar Arguments ..
212 CHARACTER COMPQ, COMPZ
213 INTEGER IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N
214* ..
215* .. Array Arguments ..
216 DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
217 $ Z( LDZ, * )
218* ..
219*
220* =====================================================================
221*
222* .. Parameters ..
223 DOUBLE PRECISION ONE, ZERO
224 parameter( one = 1.0d+0, zero = 0.0d+0 )
225* ..
226* .. Local Scalars ..
227 LOGICAL ILQ, ILZ
228 INTEGER ICOMPQ, ICOMPZ, JCOL, JROW
229 DOUBLE PRECISION C, S, TEMP
230* ..
231* .. External Functions ..
232 LOGICAL LSAME
233 EXTERNAL lsame
234* ..
235* .. External Subroutines ..
236 EXTERNAL dlartg, dlaset, drot, xerbla
237* ..
238* .. Intrinsic Functions ..
239 INTRINSIC max
240* ..
241* .. Executable Statements ..
242*
243* Decode COMPQ
244*
245 IF( lsame( compq, 'N' ) ) THEN
246 ilq = .false.
247 icompq = 1
248 ELSE IF( lsame( compq, 'V' ) ) THEN
249 ilq = .true.
250 icompq = 2
251 ELSE IF( lsame( compq, 'I' ) ) THEN
252 ilq = .true.
253 icompq = 3
254 ELSE
255 icompq = 0
256 END IF
257*
258* Decode COMPZ
259*
260 IF( lsame( compz, 'N' ) ) THEN
261 ilz = .false.
262 icompz = 1
263 ELSE IF( lsame( compz, 'V' ) ) THEN
264 ilz = .true.
265 icompz = 2
266 ELSE IF( lsame( compz, 'I' ) ) THEN
267 ilz = .true.
268 icompz = 3
269 ELSE
270 icompz = 0
271 END IF
272*
273* Test the input parameters.
274*
275 info = 0
276 IF( icompq.LE.0 ) THEN
277 info = -1
278 ELSE IF( icompz.LE.0 ) THEN
279 info = -2
280 ELSE IF( n.LT.0 ) THEN
281 info = -3
282 ELSE IF( ilo.LT.1 ) THEN
283 info = -4
284 ELSE IF( ihi.GT.n .OR. ihi.LT.ilo-1 ) THEN
285 info = -5
286 ELSE IF( lda.LT.max( 1, n ) ) THEN
287 info = -7
288 ELSE IF( ldb.LT.max( 1, n ) ) THEN
289 info = -9
290 ELSE IF( ( ilq .AND. ldq.LT.n ) .OR. ldq.LT.1 ) THEN
291 info = -11
292 ELSE IF( ( ilz .AND. ldz.LT.n ) .OR. ldz.LT.1 ) THEN
293 info = -13
294 END IF
295 IF( info.NE.0 ) THEN
296 CALL xerbla( 'DGGHRD', -info )
297 RETURN
298 END IF
299*
300* Initialize Q and Z if desired.
301*
302 IF( icompq.EQ.3 )
303 $ CALL dlaset( 'Full', n, n, zero, one, q, ldq )
304 IF( icompz.EQ.3 )
305 $ CALL dlaset( 'Full', n, n, zero, one, z, ldz )
306*
307* Quick return if possible
308*
309 IF( n.LE.1 )
310 $ RETURN
311*
312* Zero out lower triangle of B
313*
314 DO 20 jcol = 1, n - 1
315 DO 10 jrow = jcol + 1, n
316 b( jrow, jcol ) = zero
317 10 CONTINUE
318 20 CONTINUE
319*
320* Reduce A and B
321*
322 DO 40 jcol = ilo, ihi - 2
323*
324 DO 30 jrow = ihi, jcol + 2, -1
325*
326* Step 1: rotate rows JROW-1, JROW to kill A(JROW,JCOL)
327*
328 temp = a( jrow-1, jcol )
329 CALL dlartg( temp, a( jrow, jcol ), c, s,
330 $ a( jrow-1, jcol ) )
331 a( jrow, jcol ) = zero
332 CALL drot( n-jcol, a( jrow-1, jcol+1 ), lda,
333 $ a( jrow, jcol+1 ), lda, c, s )
334 CALL drot( n+2-jrow, b( jrow-1, jrow-1 ), ldb,
335 $ b( jrow, jrow-1 ), ldb, c, s )
336 IF( ilq )
337 $ CALL drot( n, q( 1, jrow-1 ), 1, q( 1, jrow ), 1, c,
338 $ s )
339*
340* Step 2: rotate columns JROW, JROW-1 to kill B(JROW,JROW-1)
341*
342 temp = b( jrow, jrow )
343 CALL dlartg( temp, b( jrow, jrow-1 ), c, s,
344 $ b( jrow, jrow ) )
345 b( jrow, jrow-1 ) = zero
346 CALL drot( ihi, a( 1, jrow ), 1, a( 1, jrow-1 ), 1, c,
347 $ s )
348 CALL drot( jrow-1, b( 1, jrow ), 1, b( 1, jrow-1 ), 1, c,
349 $ s )
350 IF( ilz )
351 $ CALL drot( n, z( 1, jrow ), 1, z( 1, jrow-1 ), 1, c,
352 $ s )
353 30 CONTINUE
354 40 CONTINUE
355*
356 RETURN
357*
358* End of DGGHRD
359*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dlartg(f, g, c, s, r)
DLARTG generates a plane rotation with real cosine and real sine.
Definition dlartg.f90:111
subroutine dlaset(uplo, m, n, alpha, beta, a, lda)
DLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition dlaset.f:108
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine drot(n, dx, incx, dy, incy, c, s)
DROT
Definition drot.f:92
Here is the call graph for this function:
Here is the caller graph for this function: