LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cptt02()

subroutine cptt02 ( character  uplo,
integer  n,
integer  nrhs,
real, dimension( * )  d,
complex, dimension( * )  e,
complex, dimension( ldx, * )  x,
integer  ldx,
complex, dimension( ldb, * )  b,
integer  ldb,
real  resid 
)

CPTT02

Purpose:
 CPTT02 computes the residual for the solution to a symmetric
 tridiagonal system of equations:
    RESID = norm(B - A*X) / (norm(A) * norm(X) * EPS),
 where EPS is the machine epsilon.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the superdiagonal or the subdiagonal of the
          tridiagonal matrix A is stored.
          = 'U':  E is the superdiagonal of A
          = 'L':  E is the subdiagonal of A
[in]N
          N is INTEGER
          The order of the matrix A.
[in]NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrices B and X.  NRHS >= 0.
[in]D
          D is REAL array, dimension (N)
          The n diagonal elements of the tridiagonal matrix A.
[in]E
          E is COMPLEX array, dimension (N-1)
          The (n-1) subdiagonal elements of the tridiagonal matrix A.
[in]X
          X is COMPLEX array, dimension (LDX,NRHS)
          The n by nrhs matrix of solution vectors X.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).
[in,out]B
          B is COMPLEX array, dimension (LDB,NRHS)
          On entry, the n by nrhs matrix of right hand side vectors B.
          On exit, B is overwritten with the difference B - A*X.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[out]RESID
          RESID is REAL
          norm(B - A*X) / (norm(A) * norm(X) * EPS)
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 114 of file cptt02.f.

115*
116* -- LAPACK test routine --
117* -- LAPACK is a software package provided by Univ. of Tennessee, --
118* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
119*
120* .. Scalar Arguments ..
121 CHARACTER UPLO
122 INTEGER LDB, LDX, N, NRHS
123 REAL RESID
124* ..
125* .. Array Arguments ..
126 REAL D( * )
127 COMPLEX B( LDB, * ), E( * ), X( LDX, * )
128* ..
129*
130* =====================================================================
131*
132* .. Parameters ..
133 REAL ONE, ZERO
134 parameter( one = 1.0e+0, zero = 0.0e+0 )
135* ..
136* .. Local Scalars ..
137 INTEGER J
138 REAL ANORM, BNORM, EPS, XNORM
139* ..
140* .. External Functions ..
141 REAL CLANHT, SCASUM, SLAMCH
142 EXTERNAL clanht, scasum, slamch
143* ..
144* .. Intrinsic Functions ..
145 INTRINSIC max
146* ..
147* .. External Subroutines ..
148 EXTERNAL claptm
149* ..
150* .. Executable Statements ..
151*
152* Quick return if possible
153*
154 IF( n.LE.0 ) THEN
155 resid = zero
156 RETURN
157 END IF
158*
159* Compute the 1-norm of the tridiagonal matrix A.
160*
161 anorm = clanht( '1', n, d, e )
162*
163* Exit with RESID = 1/EPS if ANORM = 0.
164*
165 eps = slamch( 'Epsilon' )
166 IF( anorm.LE.zero ) THEN
167 resid = one / eps
168 RETURN
169 END IF
170*
171* Compute B - A*X.
172*
173 CALL claptm( uplo, n, nrhs, -one, d, e, x, ldx, one, b, ldb )
174*
175* Compute the maximum over the number of right hand sides of
176* norm(B - A*X) / ( norm(A) * norm(X) * EPS ).
177*
178 resid = zero
179 DO 10 j = 1, nrhs
180 bnorm = scasum( n, b( 1, j ), 1 )
181 xnorm = scasum( n, x( 1, j ), 1 )
182 IF( xnorm.LE.zero ) THEN
183 resid = one / eps
184 ELSE
185 resid = max( resid, ( ( bnorm / anorm ) / xnorm ) / eps )
186 END IF
187 10 CONTINUE
188*
189 RETURN
190*
191* End of CPTT02
192*
subroutine claptm(uplo, n, nrhs, alpha, d, e, x, ldx, beta, b, ldb)
CLAPTM
Definition claptm.f:129
real function scasum(n, cx, incx)
SCASUM
Definition scasum.f:72
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function clanht(norm, n, d, e)
CLANHT returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition clanht.f:101
Here is the call graph for this function:
Here is the caller graph for this function: