LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cpbt01()

subroutine cpbt01 ( character uplo,
integer n,
integer kd,
complex, dimension( lda, * ) a,
integer lda,
complex, dimension( ldafac, * ) afac,
integer ldafac,
real, dimension( * ) rwork,
real resid )

CPBT01

Purpose:
!>
!> CPBT01 reconstructs a Hermitian positive definite band matrix A from
!> its L*L' or U'*U factorization and computes the residual
!>    norm( L*L' - A ) / ( N * norm(A) * EPS ) or
!>    norm( U'*U - A ) / ( N * norm(A) * EPS ),
!> where EPS is the machine epsilon, L' is the conjugate transpose of
!> L, and U' is the conjugate transpose of U.
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          Specifies whether the upper or lower triangular part of the
!>          Hermitian matrix A is stored:
!>          = 'U':  Upper triangular
!>          = 'L':  Lower triangular
!> 
[in]N
!>          N is INTEGER
!>          The number of rows and columns of the matrix A.  N >= 0.
!> 
[in]KD
!>          KD is INTEGER
!>          The number of super-diagonals of the matrix A if UPLO = 'U',
!>          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.
!> 
[in]A
!>          A is COMPLEX array, dimension (LDA,N)
!>          The original Hermitian band matrix A.  If UPLO = 'U', the
!>          upper triangular part of A is stored as a band matrix; if
!>          UPLO = 'L', the lower triangular part of A is stored.  The
!>          columns of the appropriate triangle are stored in the columns
!>          of A and the diagonals of the triangle are stored in the rows
!>          of A.  See CPBTRF for further details.
!> 
[in]LDA
!>          LDA is INTEGER.
!>          The leading dimension of the array A.  LDA >= max(1,KD+1).
!> 
[in]AFAC
!>          AFAC is COMPLEX array, dimension (LDAFAC,N)
!>          The factored form of the matrix A.  AFAC contains the factor
!>          L or U from the L*L' or U'*U factorization in band storage
!>          format, as computed by CPBTRF.
!> 
[in]LDAFAC
!>          LDAFAC is INTEGER
!>          The leading dimension of the array AFAC.
!>          LDAFAC >= max(1,KD+1).
!> 
[out]RWORK
!>          RWORK is REAL array, dimension (N)
!> 
[out]RESID
!>          RESID is REAL
!>          If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
!>          If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 118 of file cpbt01.f.

120*
121* -- LAPACK test routine --
122* -- LAPACK is a software package provided by Univ. of Tennessee, --
123* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
124*
125* .. Scalar Arguments ..
126 CHARACTER UPLO
127 INTEGER KD, LDA, LDAFAC, N
128 REAL RESID
129* ..
130* .. Array Arguments ..
131 REAL RWORK( * )
132 COMPLEX A( LDA, * ), AFAC( LDAFAC, * )
133* ..
134*
135* =====================================================================
136*
137*
138* .. Parameters ..
139 REAL ZERO, ONE
140 parameter( zero = 0.0e+0, one = 1.0e+0 )
141* ..
142* .. Local Scalars ..
143 INTEGER I, J, K, KC, KLEN, ML, MU
144 REAL AKK, ANORM, EPS
145* ..
146* .. External Functions ..
147 LOGICAL LSAME
148 REAL CLANHB, SLAMCH
149 COMPLEX CDOTC
150 EXTERNAL lsame, clanhb, slamch, cdotc
151* ..
152* .. External Subroutines ..
153 EXTERNAL cher, csscal, ctrmv
154* ..
155* .. Intrinsic Functions ..
156 INTRINSIC aimag, max, min, real
157* ..
158* .. Executable Statements ..
159*
160* Quick exit if N = 0.
161*
162 IF( n.LE.0 ) THEN
163 resid = zero
164 RETURN
165 END IF
166*
167* Exit with RESID = 1/EPS if ANORM = 0.
168*
169 eps = slamch( 'Epsilon' )
170 anorm = clanhb( '1', uplo, n, kd, a, lda, rwork )
171 IF( anorm.LE.zero ) THEN
172 resid = one / eps
173 RETURN
174 END IF
175*
176* Check the imaginary parts of the diagonal elements and return with
177* an error code if any are nonzero.
178*
179 IF( lsame( uplo, 'U' ) ) THEN
180 DO 10 j = 1, n
181 IF( aimag( afac( kd+1, j ) ).NE.zero ) THEN
182 resid = one / eps
183 RETURN
184 END IF
185 10 CONTINUE
186 ELSE
187 DO 20 j = 1, n
188 IF( aimag( afac( 1, j ) ).NE.zero ) THEN
189 resid = one / eps
190 RETURN
191 END IF
192 20 CONTINUE
193 END IF
194*
195* Compute the product U'*U, overwriting U.
196*
197 IF( lsame( uplo, 'U' ) ) THEN
198 DO 30 k = n, 1, -1
199 kc = max( 1, kd+2-k )
200 klen = kd + 1 - kc
201*
202* Compute the (K,K) element of the result.
203*
204 akk = real(
205 $ cdotc( klen+1, afac( kc, k ), 1, afac( kc, k ), 1 ) )
206 afac( kd+1, k ) = akk
207*
208* Compute the rest of column K.
209*
210 IF( klen.GT.0 )
211 $ CALL ctrmv( 'Upper', 'Conjugate', 'Non-unit', klen,
212 $ afac( kd+1, k-klen ), ldafac-1,
213 $ afac( kc, k ), 1 )
214*
215 30 CONTINUE
216*
217* UPLO = 'L': Compute the product L*L', overwriting L.
218*
219 ELSE
220 DO 40 k = n, 1, -1
221 klen = min( kd, n-k )
222*
223* Add a multiple of column K of the factor L to each of
224* columns K+1 through N.
225*
226 IF( klen.GT.0 )
227 $ CALL cher( 'Lower', klen, one, afac( 2, k ), 1,
228 $ afac( 1, k+1 ), ldafac-1 )
229*
230* Scale column K by the diagonal element.
231*
232 akk = real( afac( 1, k ) )
233 CALL csscal( klen+1, akk, afac( 1, k ), 1 )
234*
235 40 CONTINUE
236 END IF
237*
238* Compute the difference L*L' - A or U'*U - A.
239*
240 IF( lsame( uplo, 'U' ) ) THEN
241 DO 60 j = 1, n
242 mu = max( 1, kd+2-j )
243 DO 50 i = mu, kd + 1
244 afac( i, j ) = afac( i, j ) - a( i, j )
245 50 CONTINUE
246 60 CONTINUE
247 ELSE
248 DO 80 j = 1, n
249 ml = min( kd+1, n-j+1 )
250 DO 70 i = 1, ml
251 afac( i, j ) = afac( i, j ) - a( i, j )
252 70 CONTINUE
253 80 CONTINUE
254 END IF
255*
256* Compute norm( L*L' - A ) / ( N * norm(A) * EPS )
257*
258 resid = clanhb( '1', uplo, n, kd, afac, ldafac, rwork )
259*
260 resid = ( ( resid / real( n ) ) / anorm ) / eps
261*
262 RETURN
263*
264* End of CPBT01
265*
complex function cdotc(n, cx, incx, cy, incy)
CDOTC
Definition cdotc.f:83
subroutine cher(uplo, n, alpha, x, incx, a, lda)
CHER
Definition cher.f:135
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function clanhb(norm, uplo, n, k, ab, ldab, work)
CLANHB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition clanhb.f:130
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine csscal(n, sa, cx, incx)
CSSCAL
Definition csscal.f:78
subroutine ctrmv(uplo, trans, diag, n, a, lda, x, incx)
CTRMV
Definition ctrmv.f:147
Here is the call graph for this function:
Here is the caller graph for this function: