LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
dsbevd.f
Go to the documentation of this file.
1*> \brief <b> DSBEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download DSBEVD + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsbevd.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsbevd.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsbevd.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE DSBEVD( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
20* LWORK, IWORK, LIWORK, INFO )
21*
22* .. Scalar Arguments ..
23* CHARACTER JOBZ, UPLO
24* INTEGER INFO, KD, LDAB, LDZ, LIWORK, LWORK, N
25* ..
26* .. Array Arguments ..
27* INTEGER IWORK( * )
28* DOUBLE PRECISION AB( LDAB, * ), W( * ), WORK( * ), Z( LDZ, * )
29* ..
30*
31*
32*> \par Purpose:
33* =============
34*>
35*> \verbatim
36*>
37*> DSBEVD computes all the eigenvalues and, optionally, eigenvectors of
38*> a real symmetric band matrix A. If eigenvectors are desired, it uses
39*> a divide and conquer algorithm.
40*>
41*> \endverbatim
42*
43* Arguments:
44* ==========
45*
46*> \param[in] JOBZ
47*> \verbatim
48*> JOBZ is CHARACTER*1
49*> = 'N': Compute eigenvalues only;
50*> = 'V': Compute eigenvalues and eigenvectors.
51*> \endverbatim
52*>
53*> \param[in] UPLO
54*> \verbatim
55*> UPLO is CHARACTER*1
56*> = 'U': Upper triangle of A is stored;
57*> = 'L': Lower triangle of A is stored.
58*> \endverbatim
59*>
60*> \param[in] N
61*> \verbatim
62*> N is INTEGER
63*> The order of the matrix A. N >= 0.
64*> \endverbatim
65*>
66*> \param[in] KD
67*> \verbatim
68*> KD is INTEGER
69*> The number of superdiagonals of the matrix A if UPLO = 'U',
70*> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
71*> \endverbatim
72*>
73*> \param[in,out] AB
74*> \verbatim
75*> AB is DOUBLE PRECISION array, dimension (LDAB, N)
76*> On entry, the upper or lower triangle of the symmetric band
77*> matrix A, stored in the first KD+1 rows of the array. The
78*> j-th column of A is stored in the j-th column of the array AB
79*> as follows:
80*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
81*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
82*>
83*> On exit, AB is overwritten by values generated during the
84*> reduction to tridiagonal form. If UPLO = 'U', the first
85*> superdiagonal and the diagonal of the tridiagonal matrix T
86*> are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
87*> the diagonal and first subdiagonal of T are returned in the
88*> first two rows of AB.
89*> \endverbatim
90*>
91*> \param[in] LDAB
92*> \verbatim
93*> LDAB is INTEGER
94*> The leading dimension of the array AB. LDAB >= KD + 1.
95*> \endverbatim
96*>
97*> \param[out] W
98*> \verbatim
99*> W is DOUBLE PRECISION array, dimension (N)
100*> If INFO = 0, the eigenvalues in ascending order.
101*> \endverbatim
102*>
103*> \param[out] Z
104*> \verbatim
105*> Z is DOUBLE PRECISION array, dimension (LDZ, N)
106*> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
107*> eigenvectors of the matrix A, with the i-th column of Z
108*> holding the eigenvector associated with W(i).
109*> If JOBZ = 'N', then Z is not referenced.
110*> \endverbatim
111*>
112*> \param[in] LDZ
113*> \verbatim
114*> LDZ is INTEGER
115*> The leading dimension of the array Z. LDZ >= 1, and if
116*> JOBZ = 'V', LDZ >= max(1,N).
117*> \endverbatim
118*>
119*> \param[out] WORK
120*> \verbatim
121*> WORK is DOUBLE PRECISION array,
122*> dimension (LWORK)
123*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
124*> \endverbatim
125*>
126*> \param[in] LWORK
127*> \verbatim
128*> LWORK is INTEGER
129*> The dimension of the array WORK.
130*> IF N <= 1, LWORK must be at least 1.
131*> If JOBZ = 'N' and N > 2, LWORK must be at least 2*N.
132*> If JOBZ = 'V' and N > 2, LWORK must be at least
133*> ( 1 + 5*N + 2*N**2 ).
134*>
135*> If LWORK = -1, then a workspace query is assumed; the routine
136*> only calculates the optimal sizes of the WORK and IWORK
137*> arrays, returns these values as the first entries of the WORK
138*> and IWORK arrays, and no error message related to LWORK or
139*> LIWORK is issued by XERBLA.
140*> \endverbatim
141*>
142*> \param[out] IWORK
143*> \verbatim
144*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
145*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
146*> \endverbatim
147*>
148*> \param[in] LIWORK
149*> \verbatim
150*> LIWORK is INTEGER
151*> The dimension of the array IWORK.
152*> If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
153*> If JOBZ = 'V' and N > 2, LIWORK must be at least 3 + 5*N.
154*>
155*> If LIWORK = -1, then a workspace query is assumed; the
156*> routine only calculates the optimal sizes of the WORK and
157*> IWORK arrays, returns these values as the first entries of
158*> the WORK and IWORK arrays, and no error message related to
159*> LWORK or LIWORK is issued by XERBLA.
160*> \endverbatim
161*>
162*> \param[out] INFO
163*> \verbatim
164*> INFO is INTEGER
165*> = 0: successful exit
166*> < 0: if INFO = -i, the i-th argument had an illegal value
167*> > 0: if INFO = i, the algorithm failed to converge; i
168*> off-diagonal elements of an intermediate tridiagonal
169*> form did not converge to zero.
170*> \endverbatim
171*
172* Authors:
173* ========
174*
175*> \author Univ. of Tennessee
176*> \author Univ. of California Berkeley
177*> \author Univ. of Colorado Denver
178*> \author NAG Ltd.
179*
180*> \ingroup hbevd
181*
182* =====================================================================
183 SUBROUTINE dsbevd( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ,
184 $ WORK,
185 $ LWORK, IWORK, LIWORK, INFO )
186*
187* -- LAPACK driver routine --
188* -- LAPACK is a software package provided by Univ. of Tennessee, --
189* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
190*
191* .. Scalar Arguments ..
192 CHARACTER JOBZ, UPLO
193 INTEGER INFO, KD, LDAB, LDZ, LIWORK, LWORK, N
194* ..
195* .. Array Arguments ..
196 INTEGER IWORK( * )
197 DOUBLE PRECISION AB( LDAB, * ), W( * ), WORK( * ), Z( LDZ, * )
198* ..
199*
200* =====================================================================
201*
202* .. Parameters ..
203 DOUBLE PRECISION ZERO, ONE
204 PARAMETER ( ZERO = 0.0d+0, one = 1.0d+0 )
205* ..
206* .. Local Scalars ..
207 LOGICAL LOWER, LQUERY, WANTZ
208 INTEGER IINFO, INDE, INDWK2, INDWRK, ISCALE, LIWMIN,
209 $ llwrk2, lwmin
210 DOUBLE PRECISION ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
211 $ SMLNUM
212* ..
213* .. External Functions ..
214 LOGICAL LSAME
215 DOUBLE PRECISION DLAMCH, DLANSB
216 EXTERNAL lsame, dlamch, dlansb
217* ..
218* .. External Subroutines ..
219 EXTERNAL dgemm, dlacpy, dlascl, dsbtrd, dscal,
220 $ dstedc,
221 $ dsterf, xerbla
222* ..
223* .. Intrinsic Functions ..
224 INTRINSIC sqrt
225* ..
226* .. Executable Statements ..
227*
228* Test the input parameters.
229*
230 wantz = lsame( jobz, 'V' )
231 lower = lsame( uplo, 'L' )
232 lquery = ( lwork.EQ.-1 .OR. liwork.EQ.-1 )
233*
234 info = 0
235 IF( n.LE.1 ) THEN
236 liwmin = 1
237 lwmin = 1
238 ELSE
239 IF( wantz ) THEN
240 liwmin = 3 + 5*n
241 lwmin = 1 + 5*n + 2*n**2
242 ELSE
243 liwmin = 1
244 lwmin = 2*n
245 END IF
246 END IF
247 IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
248 info = -1
249 ELSE IF( .NOT.( lower .OR. lsame( uplo, 'U' ) ) ) THEN
250 info = -2
251 ELSE IF( n.LT.0 ) THEN
252 info = -3
253 ELSE IF( kd.LT.0 ) THEN
254 info = -4
255 ELSE IF( ldab.LT.kd+1 ) THEN
256 info = -6
257 ELSE IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
258 info = -9
259 END IF
260*
261 IF( info.EQ.0 ) THEN
262 work( 1 ) = lwmin
263 iwork( 1 ) = liwmin
264*
265 IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
266 info = -11
267 ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery ) THEN
268 info = -13
269 END IF
270 END IF
271*
272 IF( info.NE.0 ) THEN
273 CALL xerbla( 'DSBEVD', -info )
274 RETURN
275 ELSE IF( lquery ) THEN
276 RETURN
277 END IF
278*
279* Quick return if possible
280*
281 IF( n.EQ.0 )
282 $ RETURN
283*
284 IF( n.EQ.1 ) THEN
285 w( 1 ) = ab( 1, 1 )
286 IF( wantz )
287 $ z( 1, 1 ) = one
288 RETURN
289 END IF
290*
291* Get machine constants.
292*
293 safmin = dlamch( 'Safe minimum' )
294 eps = dlamch( 'Precision' )
295 smlnum = safmin / eps
296 bignum = one / smlnum
297 rmin = sqrt( smlnum )
298 rmax = sqrt( bignum )
299*
300* Scale matrix to allowable range, if necessary.
301*
302 anrm = dlansb( 'M', uplo, n, kd, ab, ldab, work )
303 iscale = 0
304 IF( anrm.GT.zero .AND. anrm.LT.rmin ) THEN
305 iscale = 1
306 sigma = rmin / anrm
307 ELSE IF( anrm.GT.rmax ) THEN
308 iscale = 1
309 sigma = rmax / anrm
310 END IF
311 IF( iscale.EQ.1 ) THEN
312 IF( lower ) THEN
313 CALL dlascl( 'B', kd, kd, one, sigma, n, n, ab, ldab,
314 $ info )
315 ELSE
316 CALL dlascl( 'Q', kd, kd, one, sigma, n, n, ab, ldab,
317 $ info )
318 END IF
319 END IF
320*
321* Call DSBTRD to reduce symmetric band matrix to tridiagonal form.
322*
323 inde = 1
324 indwrk = inde + n
325 indwk2 = indwrk + n*n
326 llwrk2 = lwork - indwk2 + 1
327 CALL dsbtrd( jobz, uplo, n, kd, ab, ldab, w, work( inde ), z,
328 $ ldz,
329 $ work( indwrk ), iinfo )
330*
331* For eigenvalues only, call DSTERF. For eigenvectors, call SSTEDC.
332*
333 IF( .NOT.wantz ) THEN
334 CALL dsterf( n, w, work( inde ), info )
335 ELSE
336 CALL dstedc( 'I', n, w, work( inde ), work( indwrk ), n,
337 $ work( indwk2 ), llwrk2, iwork, liwork, info )
338 CALL dgemm( 'N', 'N', n, n, n, one, z, ldz, work( indwrk ),
339 $ n,
340 $ zero, work( indwk2 ), n )
341 CALL dlacpy( 'A', n, n, work( indwk2 ), n, z, ldz )
342 END IF
343*
344* If matrix was scaled, then rescale eigenvalues appropriately.
345*
346 IF( iscale.EQ.1 )
347 $ CALL dscal( n, one / sigma, w, 1 )
348*
349 work( 1 ) = lwmin
350 iwork( 1 ) = liwmin
351 RETURN
352*
353* End of DSBEVD
354*
355 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
DGEMM
Definition dgemm.f:188
subroutine dsbevd(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, iwork, liwork, info)
DSBEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrice...
Definition dsbevd.f:186
subroutine dsbtrd(vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)
DSBTRD
Definition dsbtrd.f:161
subroutine dlacpy(uplo, m, n, a, lda, b, ldb)
DLACPY copies all or part of one two-dimensional array to another.
Definition dlacpy.f:101
subroutine dlascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)
DLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition dlascl.f:142
subroutine dscal(n, da, dx, incx)
DSCAL
Definition dscal.f:79
subroutine dstedc(compz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)
DSTEDC
Definition dstedc.f:180
subroutine dsterf(n, d, e, info)
DSTERF
Definition dsterf.f:84