LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zhegvd.f
Go to the documentation of this file.
1*> \brief \b ZHEGVD
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download ZHEGVD + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhegvd.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhegvd.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhegvd.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE ZHEGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
20* LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
21*
22* .. Scalar Arguments ..
23* CHARACTER JOBZ, UPLO
24* INTEGER INFO, ITYPE, LDA, LDB, LIWORK, LRWORK, LWORK, N
25* ..
26* .. Array Arguments ..
27* INTEGER IWORK( * )
28* DOUBLE PRECISION RWORK( * ), W( * )
29* COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
30* ..
31*
32*
33*> \par Purpose:
34* =============
35*>
36*> \verbatim
37*>
38*> ZHEGVD computes all the eigenvalues, and optionally, the eigenvectors
39*> of a complex generalized Hermitian-definite eigenproblem, of the form
40*> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
41*> B are assumed to be Hermitian and B is also positive definite.
42*> If eigenvectors are desired, it uses a divide and conquer algorithm.
43*>
44*> \endverbatim
45*
46* Arguments:
47* ==========
48*
49*> \param[in] ITYPE
50*> \verbatim
51*> ITYPE is INTEGER
52*> Specifies the problem type to be solved:
53*> = 1: A*x = (lambda)*B*x
54*> = 2: A*B*x = (lambda)*x
55*> = 3: B*A*x = (lambda)*x
56*> \endverbatim
57*>
58*> \param[in] JOBZ
59*> \verbatim
60*> JOBZ is CHARACTER*1
61*> = 'N': Compute eigenvalues only;
62*> = 'V': Compute eigenvalues and eigenvectors.
63*> \endverbatim
64*>
65*> \param[in] UPLO
66*> \verbatim
67*> UPLO is CHARACTER*1
68*> = 'U': Upper triangles of A and B are stored;
69*> = 'L': Lower triangles of A and B are stored.
70*> \endverbatim
71*>
72*> \param[in] N
73*> \verbatim
74*> N is INTEGER
75*> The order of the matrices A and B. N >= 0.
76*> \endverbatim
77*>
78*> \param[in,out] A
79*> \verbatim
80*> A is COMPLEX*16 array, dimension (LDA, N)
81*> On entry, the Hermitian matrix A. If UPLO = 'U', the
82*> leading N-by-N upper triangular part of A contains the
83*> upper triangular part of the matrix A. If UPLO = 'L',
84*> the leading N-by-N lower triangular part of A contains
85*> the lower triangular part of the matrix A.
86*>
87*> On exit, if JOBZ = 'V', then if INFO = 0, A contains the
88*> matrix Z of eigenvectors. The eigenvectors are normalized
89*> as follows:
90*> if ITYPE = 1 or 2, Z**H*B*Z = I;
91*> if ITYPE = 3, Z**H*inv(B)*Z = I.
92*> If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
93*> or the lower triangle (if UPLO='L') of A, including the
94*> diagonal, is destroyed.
95*> \endverbatim
96*>
97*> \param[in] LDA
98*> \verbatim
99*> LDA is INTEGER
100*> The leading dimension of the array A. LDA >= max(1,N).
101*> \endverbatim
102*>
103*> \param[in,out] B
104*> \verbatim
105*> B is COMPLEX*16 array, dimension (LDB, N)
106*> On entry, the Hermitian matrix B. If UPLO = 'U', the
107*> leading N-by-N upper triangular part of B contains the
108*> upper triangular part of the matrix B. If UPLO = 'L',
109*> the leading N-by-N lower triangular part of B contains
110*> the lower triangular part of the matrix B.
111*>
112*> On exit, if INFO <= N, the part of B containing the matrix is
113*> overwritten by the triangular factor U or L from the Cholesky
114*> factorization B = U**H*U or B = L*L**H.
115*> \endverbatim
116*>
117*> \param[in] LDB
118*> \verbatim
119*> LDB is INTEGER
120*> The leading dimension of the array B. LDB >= max(1,N).
121*> \endverbatim
122*>
123*> \param[out] W
124*> \verbatim
125*> W is DOUBLE PRECISION array, dimension (N)
126*> If INFO = 0, the eigenvalues in ascending order.
127*> \endverbatim
128*>
129*> \param[out] WORK
130*> \verbatim
131*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
132*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
133*> \endverbatim
134*>
135*> \param[in] LWORK
136*> \verbatim
137*> LWORK is INTEGER
138*> The length of the array WORK.
139*> If N <= 1, LWORK >= 1.
140*> If JOBZ = 'N' and N > 1, LWORK >= N + 1.
141*> If JOBZ = 'V' and N > 1, LWORK >= 2*N + N**2.
142*>
143*> If LWORK = -1, then a workspace query is assumed; the routine
144*> only calculates the optimal sizes of the WORK, RWORK and
145*> IWORK arrays, returns these values as the first entries of
146*> the WORK, RWORK and IWORK arrays, and no error message
147*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
148*> \endverbatim
149*>
150*> \param[out] RWORK
151*> \verbatim
152*> RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
153*> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
154*> \endverbatim
155*>
156*> \param[in] LRWORK
157*> \verbatim
158*> LRWORK is INTEGER
159*> The dimension of the array RWORK.
160*> If N <= 1, LRWORK >= 1.
161*> If JOBZ = 'N' and N > 1, LRWORK >= N.
162*> If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
163*>
164*> If LRWORK = -1, then a workspace query is assumed; the
165*> routine only calculates the optimal sizes of the WORK, RWORK
166*> and IWORK arrays, returns these values as the first entries
167*> of the WORK, RWORK and IWORK arrays, and no error message
168*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
169*> \endverbatim
170*>
171*> \param[out] IWORK
172*> \verbatim
173*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
174*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
175*> \endverbatim
176*>
177*> \param[in] LIWORK
178*> \verbatim
179*> LIWORK is INTEGER
180*> The dimension of the array IWORK.
181*> If N <= 1, LIWORK >= 1.
182*> If JOBZ = 'N' and N > 1, LIWORK >= 1.
183*> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
184*>
185*> If LIWORK = -1, then a workspace query is assumed; the
186*> routine only calculates the optimal sizes of the WORK, RWORK
187*> and IWORK arrays, returns these values as the first entries
188*> of the WORK, RWORK and IWORK arrays, and no error message
189*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
190*> \endverbatim
191*>
192*> \param[out] INFO
193*> \verbatim
194*> INFO is INTEGER
195*> = 0: successful exit
196*> < 0: if INFO = -i, the i-th argument had an illegal value
197*> > 0: ZPOTRF or ZHEEVD returned an error code:
198*> <= N: if INFO = i and JOBZ = 'N', then the algorithm
199*> failed to converge; i off-diagonal elements of an
200*> intermediate tridiagonal form did not converge to
201*> zero;
202*> if INFO = i and JOBZ = 'V', then the algorithm
203*> failed to compute an eigenvalue while working on
204*> the submatrix lying in rows and columns INFO/(N+1)
205*> through mod(INFO,N+1);
206*> > N: if INFO = N + i, for 1 <= i <= N, then the leading
207*> principal minor of order i of B is not positive.
208*> The factorization of B could not be completed and
209*> no eigenvalues or eigenvectors were computed.
210*> \endverbatim
211*
212* Authors:
213* ========
214*
215*> \author Univ. of Tennessee
216*> \author Univ. of California Berkeley
217*> \author Univ. of Colorado Denver
218*> \author NAG Ltd.
219*
220*> \ingroup hegvd
221*
222*> \par Further Details:
223* =====================
224*>
225*> \verbatim
226*>
227*> Modified so that no backsubstitution is performed if ZHEEVD fails to
228*> converge (NEIG in old code could be greater than N causing out of
229*> bounds reference to A - reported by Ralf Meyer). Also corrected the
230*> description of INFO and the test on ITYPE. Sven, 16 Feb 05.
231*> \endverbatim
232*
233*> \par Contributors:
234* ==================
235*>
236*> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
237*>
238* =====================================================================
239 SUBROUTINE zhegvd( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W,
240 $ WORK,
241 $ LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
242*
243* -- LAPACK driver routine --
244* -- LAPACK is a software package provided by Univ. of Tennessee, --
245* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
246*
247* .. Scalar Arguments ..
248 CHARACTER JOBZ, UPLO
249 INTEGER INFO, ITYPE, LDA, LDB, LIWORK, LRWORK, LWORK, N
250* ..
251* .. Array Arguments ..
252 INTEGER IWORK( * )
253 DOUBLE PRECISION RWORK( * ), W( * )
254 COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
255* ..
256*
257* =====================================================================
258*
259* .. Parameters ..
260 COMPLEX*16 CONE
261 PARAMETER ( CONE = ( 1.0d+0, 0.0d+0 ) )
262* ..
263* .. Local Scalars ..
264 LOGICAL LQUERY, UPPER, WANTZ
265 CHARACTER TRANS
266 INTEGER LIOPT, LIWMIN, LOPT, LROPT, LRWMIN, LWMIN
267* ..
268* .. External Functions ..
269 LOGICAL LSAME
270 EXTERNAL LSAME
271* ..
272* .. External Subroutines ..
273 EXTERNAL xerbla, zheevd, zhegst, zpotrf, ztrmm,
274 $ ztrsm
275* ..
276* .. Intrinsic Functions ..
277 INTRINSIC dble, max
278* ..
279* .. Executable Statements ..
280*
281* Test the input parameters.
282*
283 wantz = lsame( jobz, 'V' )
284 upper = lsame( uplo, 'U' )
285 lquery = ( lwork.EQ.-1 .OR. lrwork.EQ.-1 .OR. liwork.EQ.-1 )
286*
287 info = 0
288 IF( n.LE.1 ) THEN
289 lwmin = 1
290 lrwmin = 1
291 liwmin = 1
292 ELSE IF( wantz ) THEN
293 lwmin = 2*n + n*n
294 lrwmin = 1 + 5*n + 2*n*n
295 liwmin = 3 + 5*n
296 ELSE
297 lwmin = n + 1
298 lrwmin = n
299 liwmin = 1
300 END IF
301 lopt = lwmin
302 lropt = lrwmin
303 liopt = liwmin
304 IF( itype.LT.1 .OR. itype.GT.3 ) THEN
305 info = -1
306 ELSE IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
307 info = -2
308 ELSE IF( .NOT.( upper .OR. lsame( uplo, 'L' ) ) ) THEN
309 info = -3
310 ELSE IF( n.LT.0 ) THEN
311 info = -4
312 ELSE IF( lda.LT.max( 1, n ) ) THEN
313 info = -6
314 ELSE IF( ldb.LT.max( 1, n ) ) THEN
315 info = -8
316 END IF
317*
318 IF( info.EQ.0 ) THEN
319 work( 1 ) = lopt
320 rwork( 1 ) = real( lropt )
321 iwork( 1 ) = liopt
322*
323 IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
324 info = -11
325 ELSE IF( lrwork.LT.lrwmin .AND. .NOT.lquery ) THEN
326 info = -13
327 ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery ) THEN
328 info = -15
329 END IF
330 END IF
331*
332 IF( info.NE.0 ) THEN
333 CALL xerbla( 'ZHEGVD', -info )
334 RETURN
335 ELSE IF( lquery ) THEN
336 RETURN
337 END IF
338*
339* Quick return if possible
340*
341 IF( n.EQ.0 )
342 $ RETURN
343*
344* Form a Cholesky factorization of B.
345*
346 CALL zpotrf( uplo, n, b, ldb, info )
347 IF( info.NE.0 ) THEN
348 info = n + info
349 RETURN
350 END IF
351*
352* Transform problem to standard eigenvalue problem and solve.
353*
354 CALL zhegst( itype, uplo, n, a, lda, b, ldb, info )
355 CALL zheevd( jobz, uplo, n, a, lda, w, work, lwork, rwork,
356 $ lrwork,
357 $ iwork, liwork, info )
358 lopt = int( max( dble( lopt ), dble( work( 1 ) ) ) )
359 lropt = int( max( dble( lropt ), dble( rwork( 1 ) ) ) )
360 liopt = int( max( dble( liopt ), dble( iwork( 1 ) ) ) )
361*
362 IF( wantz .AND. info.EQ.0 ) THEN
363*
364* Backtransform eigenvectors to the original problem.
365*
366 IF( itype.EQ.1 .OR. itype.EQ.2 ) THEN
367*
368* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
369* backtransform eigenvectors: x = inv(L)**H *y or inv(U)*y
370*
371 IF( upper ) THEN
372 trans = 'N'
373 ELSE
374 trans = 'C'
375 END IF
376*
377 CALL ztrsm( 'Left', uplo, trans, 'Non-unit', n, n, cone,
378 $ b, ldb, a, lda )
379*
380 ELSE IF( itype.EQ.3 ) THEN
381*
382* For B*A*x=(lambda)*x;
383* backtransform eigenvectors: x = L*y or U**H *y
384*
385 IF( upper ) THEN
386 trans = 'C'
387 ELSE
388 trans = 'N'
389 END IF
390*
391 CALL ztrmm( 'Left', uplo, trans, 'Non-unit', n, n, cone,
392 $ b, ldb, a, lda )
393 END IF
394 END IF
395*
396 work( 1 ) = lopt
397 rwork( 1 ) = real( lropt )
398 iwork( 1 ) = liopt
399*
400 RETURN
401*
402* End of ZHEGVD
403*
404 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zheevd(jobz, uplo, n, a, lda, w, work, lwork, rwork, lrwork, iwork, liwork, info)
ZHEEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices
Definition zheevd.f:197
subroutine zhegst(itype, uplo, n, a, lda, b, ldb, info)
ZHEGST
Definition zhegst.f:126
subroutine zhegvd(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, rwork, lrwork, iwork, liwork, info)
ZHEGVD
Definition zhegvd.f:242
subroutine zpotrf(uplo, n, a, lda, info)
ZPOTRF
Definition zpotrf.f:105
subroutine ztrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
ZTRMM
Definition ztrmm.f:177
subroutine ztrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
ZTRSM
Definition ztrsm.f:180