LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zhetd2()

subroutine zhetd2 ( character  uplo,
integer  n,
complex*16, dimension( lda, * )  a,
integer  lda,
double precision, dimension( * )  d,
double precision, dimension( * )  e,
complex*16, dimension( * )  tau,
integer  info 
)

ZHETD2 reduces a Hermitian matrix to real symmetric tridiagonal form by an unitary similarity transformation (unblocked algorithm).

Download ZHETD2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 ZHETD2 reduces a complex Hermitian matrix A to real symmetric
 tridiagonal form T by a unitary similarity transformation:
 Q**H * A * Q = T.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          Hermitian matrix A is stored:
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in,out]A
          A is COMPLEX*16 array, dimension (LDA,N)
          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
          n-by-n upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading n-by-n lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.
          On exit, if UPLO = 'U', the diagonal and first superdiagonal
          of A are overwritten by the corresponding elements of the
          tridiagonal matrix T, and the elements above the first
          superdiagonal, with the array TAU, represent the unitary
          matrix Q as a product of elementary reflectors; if UPLO
          = 'L', the diagonal and first subdiagonal of A are over-
          written by the corresponding elements of the tridiagonal
          matrix T, and the elements below the first subdiagonal, with
          the array TAU, represent the unitary matrix Q as a product
          of elementary reflectors. See Further Details.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[out]D
          D is DOUBLE PRECISION array, dimension (N)
          The diagonal elements of the tridiagonal matrix T:
          D(i) = A(i,i).
[out]E
          E is DOUBLE PRECISION array, dimension (N-1)
          The off-diagonal elements of the tridiagonal matrix T:
          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
[out]TAU
          TAU is COMPLEX*16 array, dimension (N-1)
          The scalar factors of the elementary reflectors (see Further
          Details).
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
  If UPLO = 'U', the matrix Q is represented as a product of elementary
  reflectors

     Q = H(n-1) . . . H(2) H(1).

  Each H(i) has the form

     H(i) = I - tau * v * v**H

  where tau is a complex scalar, and v is a complex vector with
  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
  A(1:i-1,i+1), and tau in TAU(i).

  If UPLO = 'L', the matrix Q is represented as a product of elementary
  reflectors

     Q = H(1) H(2) . . . H(n-1).

  Each H(i) has the form

     H(i) = I - tau * v * v**H

  where tau is a complex scalar, and v is a complex vector with
  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
  and tau in TAU(i).

  The contents of A on exit are illustrated by the following examples
  with n = 5:

  if UPLO = 'U':                       if UPLO = 'L':

    (  d   e   v2  v3  v4 )              (  d                  )
    (      d   e   v3  v4 )              (  e   d              )
    (          d   e   v4 )              (  v1  e   d          )
    (              d   e  )              (  v1  v2  e   d      )
    (                  d  )              (  v1  v2  v3  e   d  )

  where d and e denote diagonal and off-diagonal elements of T, and vi
  denotes an element of the vector defining H(i).

Definition at line 174 of file zhetd2.f.

175*
176* -- LAPACK computational routine --
177* -- LAPACK is a software package provided by Univ. of Tennessee, --
178* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
179*
180* .. Scalar Arguments ..
181 CHARACTER UPLO
182 INTEGER INFO, LDA, N
183* ..
184* .. Array Arguments ..
185 DOUBLE PRECISION D( * ), E( * )
186 COMPLEX*16 A( LDA, * ), TAU( * )
187* ..
188*
189* =====================================================================
190*
191* .. Parameters ..
192 COMPLEX*16 ONE, ZERO, HALF
193 parameter( one = ( 1.0d+0, 0.0d+0 ),
194 $ zero = ( 0.0d+0, 0.0d+0 ),
195 $ half = ( 0.5d+0, 0.0d+0 ) )
196* ..
197* .. Local Scalars ..
198 LOGICAL UPPER
199 INTEGER I
200 COMPLEX*16 ALPHA, TAUI
201* ..
202* .. External Subroutines ..
203 EXTERNAL xerbla, zaxpy, zhemv, zher2, zlarfg
204* ..
205* .. External Functions ..
206 LOGICAL LSAME
207 COMPLEX*16 ZDOTC
208 EXTERNAL lsame, zdotc
209* ..
210* .. Intrinsic Functions ..
211 INTRINSIC dble, max, min
212* ..
213* .. Executable Statements ..
214*
215* Test the input parameters
216*
217 info = 0
218 upper = lsame( uplo, 'U')
219 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
220 info = -1
221 ELSE IF( n.LT.0 ) THEN
222 info = -2
223 ELSE IF( lda.LT.max( 1, n ) ) THEN
224 info = -4
225 END IF
226 IF( info.NE.0 ) THEN
227 CALL xerbla( 'ZHETD2', -info )
228 RETURN
229 END IF
230*
231* Quick return if possible
232*
233 IF( n.LE.0 )
234 $ RETURN
235*
236 IF( upper ) THEN
237*
238* Reduce the upper triangle of A
239*
240 a( n, n ) = dble( a( n, n ) )
241 DO 10 i = n - 1, 1, -1
242*
243* Generate elementary reflector H(i) = I - tau * v * v**H
244* to annihilate A(1:i-1,i+1)
245*
246 alpha = a( i, i+1 )
247 CALL zlarfg( i, alpha, a( 1, i+1 ), 1, taui )
248 e( i ) = dble( alpha )
249*
250 IF( taui.NE.zero ) THEN
251*
252* Apply H(i) from both sides to A(1:i,1:i)
253*
254 a( i, i+1 ) = one
255*
256* Compute x := tau * A * v storing x in TAU(1:i)
257*
258 CALL zhemv( uplo, i, taui, a, lda, a( 1, i+1 ), 1, zero,
259 $ tau, 1 )
260*
261* Compute w := x - 1/2 * tau * (x**H * v) * v
262*
263 alpha = -half*taui*zdotc( i, tau, 1, a( 1, i+1 ), 1 )
264 CALL zaxpy( i, alpha, a( 1, i+1 ), 1, tau, 1 )
265*
266* Apply the transformation as a rank-2 update:
267* A := A - v * w**H - w * v**H
268*
269 CALL zher2( uplo, i, -one, a( 1, i+1 ), 1, tau, 1, a,
270 $ lda )
271*
272 ELSE
273 a( i, i ) = dble( a( i, i ) )
274 END IF
275 a( i, i+1 ) = e( i )
276 d( i+1 ) = dble( a( i+1, i+1 ) )
277 tau( i ) = taui
278 10 CONTINUE
279 d( 1 ) = dble( a( 1, 1 ) )
280 ELSE
281*
282* Reduce the lower triangle of A
283*
284 a( 1, 1 ) = dble( a( 1, 1 ) )
285 DO 20 i = 1, n - 1
286*
287* Generate elementary reflector H(i) = I - tau * v * v**H
288* to annihilate A(i+2:n,i)
289*
290 alpha = a( i+1, i )
291 CALL zlarfg( n-i, alpha, a( min( i+2, n ), i ), 1, taui )
292 e( i ) = dble( alpha )
293*
294 IF( taui.NE.zero ) THEN
295*
296* Apply H(i) from both sides to A(i+1:n,i+1:n)
297*
298 a( i+1, i ) = one
299*
300* Compute x := tau * A * v storing y in TAU(i:n-1)
301*
302 CALL zhemv( uplo, n-i, taui, a( i+1, i+1 ), lda,
303 $ a( i+1, i ), 1, zero, tau( i ), 1 )
304*
305* Compute w := x - 1/2 * tau * (x**H * v) * v
306*
307 alpha = -half*taui*zdotc( n-i, tau( i ), 1, a( i+1, i ),
308 $ 1 )
309 CALL zaxpy( n-i, alpha, a( i+1, i ), 1, tau( i ), 1 )
310*
311* Apply the transformation as a rank-2 update:
312* A := A - v * w**H - w * v**H
313*
314 CALL zher2( uplo, n-i, -one, a( i+1, i ), 1, tau( i ), 1,
315 $ a( i+1, i+1 ), lda )
316*
317 ELSE
318 a( i+1, i+1 ) = dble( a( i+1, i+1 ) )
319 END IF
320 a( i+1, i ) = e( i )
321 d( i ) = dble( a( i, i ) )
322 tau( i ) = taui
323 20 CONTINUE
324 d( n ) = dble( a( n, n ) )
325 END IF
326*
327 RETURN
328*
329* End of ZHETD2
330*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zaxpy(n, za, zx, incx, zy, incy)
ZAXPY
Definition zaxpy.f:88
complex *16 function zdotc(n, zx, incx, zy, incy)
ZDOTC
Definition zdotc.f:83
subroutine zhemv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
ZHEMV
Definition zhemv.f:154
subroutine zher2(uplo, n, alpha, x, incx, y, incy, a, lda)
ZHER2
Definition zher2.f:150
subroutine zlarfg(n, alpha, x, incx, tau)
ZLARFG generates an elementary reflector (Householder matrix).
Definition zlarfg.f:106
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: