LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zhetd2.f
Go to the documentation of this file.
1*> \brief \b ZHETD2 reduces a Hermitian matrix to real symmetric tridiagonal form by an unitary similarity transformation (unblocked algorithm).
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download ZHETD2 + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetd2.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetd2.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetd2.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE ZHETD2( UPLO, N, A, LDA, D, E, TAU, INFO )
20*
21* .. Scalar Arguments ..
22* CHARACTER UPLO
23* INTEGER INFO, LDA, N
24* ..
25* .. Array Arguments ..
26* DOUBLE PRECISION D( * ), E( * )
27* COMPLEX*16 A( LDA, * ), TAU( * )
28* ..
29*
30*
31*> \par Purpose:
32* =============
33*>
34*> \verbatim
35*>
36*> ZHETD2 reduces a complex Hermitian matrix A to real symmetric
37*> tridiagonal form T by a unitary similarity transformation:
38*> Q**H * A * Q = T.
39*> \endverbatim
40*
41* Arguments:
42* ==========
43*
44*> \param[in] UPLO
45*> \verbatim
46*> UPLO is CHARACTER*1
47*> Specifies whether the upper or lower triangular part of the
48*> Hermitian matrix A is stored:
49*> = 'U': Upper triangular
50*> = 'L': Lower triangular
51*> \endverbatim
52*>
53*> \param[in] N
54*> \verbatim
55*> N is INTEGER
56*> The order of the matrix A. N >= 0.
57*> \endverbatim
58*>
59*> \param[in,out] A
60*> \verbatim
61*> A is COMPLEX*16 array, dimension (LDA,N)
62*> On entry, the Hermitian matrix A. If UPLO = 'U', the leading
63*> n-by-n upper triangular part of A contains the upper
64*> triangular part of the matrix A, and the strictly lower
65*> triangular part of A is not referenced. If UPLO = 'L', the
66*> leading n-by-n lower triangular part of A contains the lower
67*> triangular part of the matrix A, and the strictly upper
68*> triangular part of A is not referenced.
69*> On exit, if UPLO = 'U', the diagonal and first superdiagonal
70*> of A are overwritten by the corresponding elements of the
71*> tridiagonal matrix T, and the elements above the first
72*> superdiagonal, with the array TAU, represent the unitary
73*> matrix Q as a product of elementary reflectors; if UPLO
74*> = 'L', the diagonal and first subdiagonal of A are over-
75*> written by the corresponding elements of the tridiagonal
76*> matrix T, and the elements below the first subdiagonal, with
77*> the array TAU, represent the unitary matrix Q as a product
78*> of elementary reflectors. See Further Details.
79*> \endverbatim
80*>
81*> \param[in] LDA
82*> \verbatim
83*> LDA is INTEGER
84*> The leading dimension of the array A. LDA >= max(1,N).
85*> \endverbatim
86*>
87*> \param[out] D
88*> \verbatim
89*> D is DOUBLE PRECISION array, dimension (N)
90*> The diagonal elements of the tridiagonal matrix T:
91*> D(i) = A(i,i).
92*> \endverbatim
93*>
94*> \param[out] E
95*> \verbatim
96*> E is DOUBLE PRECISION array, dimension (N-1)
97*> The off-diagonal elements of the tridiagonal matrix T:
98*> E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
99*> \endverbatim
100*>
101*> \param[out] TAU
102*> \verbatim
103*> TAU is COMPLEX*16 array, dimension (N-1)
104*> The scalar factors of the elementary reflectors (see Further
105*> Details).
106*> \endverbatim
107*>
108*> \param[out] INFO
109*> \verbatim
110*> INFO is INTEGER
111*> = 0: successful exit
112*> < 0: if INFO = -i, the i-th argument had an illegal value.
113*> \endverbatim
114*
115* Authors:
116* ========
117*
118*> \author Univ. of Tennessee
119*> \author Univ. of California Berkeley
120*> \author Univ. of Colorado Denver
121*> \author NAG Ltd.
122*
123*> \ingroup hetd2
124*
125*> \par Further Details:
126* =====================
127*>
128*> \verbatim
129*>
130*> If UPLO = 'U', the matrix Q is represented as a product of elementary
131*> reflectors
132*>
133*> Q = H(n-1) . . . H(2) H(1).
134*>
135*> Each H(i) has the form
136*>
137*> H(i) = I - tau * v * v**H
138*>
139*> where tau is a complex scalar, and v is a complex vector with
140*> v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
141*> A(1:i-1,i+1), and tau in TAU(i).
142*>
143*> If UPLO = 'L', the matrix Q is represented as a product of elementary
144*> reflectors
145*>
146*> Q = H(1) H(2) . . . H(n-1).
147*>
148*> Each H(i) has the form
149*>
150*> H(i) = I - tau * v * v**H
151*>
152*> where tau is a complex scalar, and v is a complex vector with
153*> v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
154*> and tau in TAU(i).
155*>
156*> The contents of A on exit are illustrated by the following examples
157*> with n = 5:
158*>
159*> if UPLO = 'U': if UPLO = 'L':
160*>
161*> ( d e v2 v3 v4 ) ( d )
162*> ( d e v3 v4 ) ( e d )
163*> ( d e v4 ) ( v1 e d )
164*> ( d e ) ( v1 v2 e d )
165*> ( d ) ( v1 v2 v3 e d )
166*>
167*> where d and e denote diagonal and off-diagonal elements of T, and vi
168*> denotes an element of the vector defining H(i).
169*> \endverbatim
170*>
171* =====================================================================
172 SUBROUTINE zhetd2( UPLO, N, A, LDA, D, E, TAU, INFO )
173*
174* -- LAPACK computational routine --
175* -- LAPACK is a software package provided by Univ. of Tennessee, --
176* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
177*
178* .. Scalar Arguments ..
179 CHARACTER UPLO
180 INTEGER INFO, LDA, N
181* ..
182* .. Array Arguments ..
183 DOUBLE PRECISION D( * ), E( * )
184 COMPLEX*16 A( LDA, * ), TAU( * )
185* ..
186*
187* =====================================================================
188*
189* .. Parameters ..
190 COMPLEX*16 ONE, ZERO, HALF
191 parameter( one = ( 1.0d+0, 0.0d+0 ),
192 $ zero = ( 0.0d+0, 0.0d+0 ),
193 $ half = ( 0.5d+0, 0.0d+0 ) )
194* ..
195* .. Local Scalars ..
196 LOGICAL UPPER
197 INTEGER I
198 COMPLEX*16 ALPHA, TAUI
199* ..
200* .. External Subroutines ..
201 EXTERNAL xerbla, zaxpy, zhemv, zher2, zlarfg
202* ..
203* .. External Functions ..
204 LOGICAL LSAME
205 COMPLEX*16 ZDOTC
206 EXTERNAL lsame, zdotc
207* ..
208* .. Intrinsic Functions ..
209 INTRINSIC dble, max, min
210* ..
211* .. Executable Statements ..
212*
213* Test the input parameters
214*
215 info = 0
216 upper = lsame( uplo, 'U')
217 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
218 info = -1
219 ELSE IF( n.LT.0 ) THEN
220 info = -2
221 ELSE IF( lda.LT.max( 1, n ) ) THEN
222 info = -4
223 END IF
224 IF( info.NE.0 ) THEN
225 CALL xerbla( 'ZHETD2', -info )
226 RETURN
227 END IF
228*
229* Quick return if possible
230*
231 IF( n.LE.0 )
232 $ RETURN
233*
234 IF( upper ) THEN
235*
236* Reduce the upper triangle of A
237*
238 a( n, n ) = dble( a( n, n ) )
239 DO 10 i = n - 1, 1, -1
240*
241* Generate elementary reflector H(i) = I - tau * v * v**H
242* to annihilate A(1:i-1,i+1)
243*
244 alpha = a( i, i+1 )
245 CALL zlarfg( i, alpha, a( 1, i+1 ), 1, taui )
246 e( i ) = dble( alpha )
247*
248 IF( taui.NE.zero ) THEN
249*
250* Apply H(i) from both sides to A(1:i,1:i)
251*
252 a( i, i+1 ) = one
253*
254* Compute x := tau * A * v storing x in TAU(1:i)
255*
256 CALL zhemv( uplo, i, taui, a, lda, a( 1, i+1 ), 1,
257 $ zero,
258 $ tau, 1 )
259*
260* Compute w := x - 1/2 * tau * (x**H * v) * v
261*
262 alpha = -half*taui*zdotc( i, tau, 1, a( 1, i+1 ), 1 )
263 CALL zaxpy( i, alpha, a( 1, i+1 ), 1, tau, 1 )
264*
265* Apply the transformation as a rank-2 update:
266* A := A - v * w**H - w * v**H
267*
268 CALL zher2( uplo, i, -one, a( 1, i+1 ), 1, tau, 1, a,
269 $ lda )
270*
271 ELSE
272 a( i, i ) = dble( a( i, i ) )
273 END IF
274 a( i, i+1 ) = e( i )
275 d( i+1 ) = dble( a( i+1, i+1 ) )
276 tau( i ) = taui
277 10 CONTINUE
278 d( 1 ) = dble( a( 1, 1 ) )
279 ELSE
280*
281* Reduce the lower triangle of A
282*
283 a( 1, 1 ) = dble( a( 1, 1 ) )
284 DO 20 i = 1, n - 1
285*
286* Generate elementary reflector H(i) = I - tau * v * v**H
287* to annihilate A(i+2:n,i)
288*
289 alpha = a( i+1, i )
290 CALL zlarfg( n-i, alpha, a( min( i+2, n ), i ), 1, taui )
291 e( i ) = dble( alpha )
292*
293 IF( taui.NE.zero ) THEN
294*
295* Apply H(i) from both sides to A(i+1:n,i+1:n)
296*
297 a( i+1, i ) = one
298*
299* Compute x := tau * A * v storing y in TAU(i:n-1)
300*
301 CALL zhemv( uplo, n-i, taui, a( i+1, i+1 ), lda,
302 $ a( i+1, i ), 1, zero, tau( i ), 1 )
303*
304* Compute w := x - 1/2 * tau * (x**H * v) * v
305*
306 alpha = -half*taui*zdotc( n-i, tau( i ), 1, a( i+1,
307 $ i ),
308 $ 1 )
309 CALL zaxpy( n-i, alpha, a( i+1, i ), 1, tau( i ), 1 )
310*
311* Apply the transformation as a rank-2 update:
312* A := A - v * w**H - w * v**H
313*
314 CALL zher2( uplo, n-i, -one, a( i+1, i ), 1, tau( i ),
315 $ 1,
316 $ a( i+1, i+1 ), lda )
317*
318 ELSE
319 a( i+1, i+1 ) = dble( a( i+1, i+1 ) )
320 END IF
321 a( i+1, i ) = e( i )
322 d( i ) = dble( a( i, i ) )
323 tau( i ) = taui
324 20 CONTINUE
325 d( n ) = dble( a( n, n ) )
326 END IF
327*
328 RETURN
329*
330* End of ZHETD2
331*
332 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zaxpy(n, za, zx, incx, zy, incy)
ZAXPY
Definition zaxpy.f:88
subroutine zhemv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
ZHEMV
Definition zhemv.f:154
subroutine zher2(uplo, n, alpha, x, incx, y, incy, a, lda)
ZHER2
Definition zher2.f:150
subroutine zhetd2(uplo, n, a, lda, d, e, tau, info)
ZHETD2 reduces a Hermitian matrix to real symmetric tridiagonal form by an unitary similarity transfo...
Definition zhetd2.f:173
subroutine zlarfg(n, alpha, x, incx, tau)
ZLARFG generates an elementary reflector (Householder matrix).
Definition zlarfg.f:104