LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dporfsx()

subroutine dporfsx ( character  uplo,
character  equed,
integer  n,
integer  nrhs,
double precision, dimension( lda, * )  a,
integer  lda,
double precision, dimension( ldaf, * )  af,
integer  ldaf,
double precision, dimension( * )  s,
double precision, dimension( ldb, * )  b,
integer  ldb,
double precision, dimension( ldx, * )  x,
integer  ldx,
double precision  rcond,
double precision, dimension( * )  berr,
integer  n_err_bnds,
double precision, dimension( nrhs, * )  err_bnds_norm,
double precision, dimension( nrhs, * )  err_bnds_comp,
integer  nparams,
double precision, dimension( * )  params,
double precision, dimension( * )  work,
integer, dimension( * )  iwork,
integer  info 
)

DPORFSX

Download DPORFSX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
    DPORFSX improves the computed solution to a system of linear
    equations when the coefficient matrix is symmetric positive
    definite, and provides error bounds and backward error estimates
    for the solution.  In addition to normwise error bound, the code
    provides maximum componentwise error bound if possible.  See
    comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the
    error bounds.

    The original system of linear equations may have been equilibrated
    before calling this routine, as described by arguments EQUED and S
    below. In this case, the solution and error bounds returned are
    for the original unequilibrated system.
     Some optional parameters are bundled in the PARAMS array.  These
     settings determine how refinement is performed, but often the
     defaults are acceptable.  If the defaults are acceptable, users
     can pass NPARAMS = 0 which prevents the source code from accessing
     the PARAMS argument.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
       = 'U':  Upper triangle of A is stored;
       = 'L':  Lower triangle of A is stored.
[in]EQUED
          EQUED is CHARACTER*1
     Specifies the form of equilibration that was done to A
     before calling this routine. This is needed to compute
     the solution and error bounds correctly.
       = 'N':  No equilibration
       = 'Y':  Both row and column equilibration, i.e., A has been
               replaced by diag(S) * A * diag(S).
               The right hand side B has been changed accordingly.
[in]N
          N is INTEGER
     The order of the matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
     The number of right hand sides, i.e., the number of columns
     of the matrices B and X.  NRHS >= 0.
[in]A
          A is DOUBLE PRECISION array, dimension (LDA,N)
     The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
     upper triangular part of A contains the upper triangular part
     of the matrix A, and the strictly lower triangular part of A
     is not referenced.  If UPLO = 'L', the leading N-by-N lower
     triangular part of A contains the lower triangular part of
     the matrix A, and the strictly upper triangular part of A is
     not referenced.
[in]LDA
          LDA is INTEGER
     The leading dimension of the array A.  LDA >= max(1,N).
[in]AF
          AF is DOUBLE PRECISION array, dimension (LDAF,N)
     The triangular factor U or L from the Cholesky factorization
     A = U**T*U or A = L*L**T, as computed by DPOTRF.
[in]LDAF
          LDAF is INTEGER
     The leading dimension of the array AF.  LDAF >= max(1,N).
[in,out]S
          S is DOUBLE PRECISION array, dimension (N)
     The scale factors for A.  If EQUED = 'Y', A is multiplied on
     the left and right by diag(S).  S is an input argument if FACT =
     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED
     = 'Y', each element of S must be positive.  If S is output, each
     element of S is a power of the radix. If S is input, each element
     of S should be a power of the radix to ensure a reliable solution
     and error estimates. Scaling by powers of the radix does not cause
     rounding errors unless the result underflows or overflows.
     Rounding errors during scaling lead to refining with a matrix that
     is not equivalent to the input matrix, producing error estimates
     that may not be reliable.
[in]B
          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
     The right hand side matrix B.
[in]LDB
          LDB is INTEGER
     The leading dimension of the array B.  LDB >= max(1,N).
[in,out]X
          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
     On entry, the solution matrix X, as computed by DGETRS.
     On exit, the improved solution matrix X.
[in]LDX
          LDX is INTEGER
     The leading dimension of the array X.  LDX >= max(1,N).
[out]RCOND
          RCOND is DOUBLE PRECISION
     Reciprocal scaled condition number.  This is an estimate of the
     reciprocal Skeel condition number of the matrix A after
     equilibration (if done).  If this is less than the machine
     precision (in particular, if it is zero), the matrix is singular
     to working precision.  Note that the error may still be small even
     if this number is very small and the matrix appears ill-
     conditioned.
[out]BERR
          BERR is DOUBLE PRECISION array, dimension (NRHS)
     Componentwise relative backward error.  This is the
     componentwise relative backward error of each solution vector X(j)
     (i.e., the smallest relative change in any element of A or B that
     makes X(j) an exact solution).
[in]N_ERR_BNDS
          N_ERR_BNDS is INTEGER
     Number of error bounds to return for each right hand side
     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
     ERR_BNDS_COMP below.
[out]ERR_BNDS_NORM
          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
     For each right-hand side, this array contains information about
     various error bounds and condition numbers corresponding to the
     normwise relative error, which is defined as follows:

     Normwise relative error in the ith solution vector:
             max_j (abs(XTRUE(j,i) - X(j,i)))
            ------------------------------
                  max_j abs(X(j,i))

     The array is indexed by the type of error information as described
     below. There currently are up to three pieces of information
     returned.

     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
     right-hand side.

     The second index in ERR_BNDS_NORM(:,err) contains the following
     three fields:
     err = 1 "Trust/don't trust" boolean. Trust the answer if the
              reciprocal condition number is less than the threshold
              sqrt(n) * dlamch('Epsilon').

     err = 2 "Guaranteed" error bound: The estimated forward error,
              almost certainly within a factor of 10 of the true error
              so long as the next entry is greater than the threshold
              sqrt(n) * dlamch('Epsilon'). This error bound should only
              be trusted if the previous boolean is true.

     err = 3  Reciprocal condition number: Estimated normwise
              reciprocal condition number.  Compared with the threshold
              sqrt(n) * dlamch('Epsilon') to determine if the error
              estimate is "guaranteed". These reciprocal condition
              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
              appropriately scaled matrix Z.
              Let Z = S*A, where S scales each row by a power of the
              radix so all absolute row sums of Z are approximately 1.

     See Lapack Working Note 165 for further details and extra
     cautions.
[out]ERR_BNDS_COMP
          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
     For each right-hand side, this array contains information about
     various error bounds and condition numbers corresponding to the
     componentwise relative error, which is defined as follows:

     Componentwise relative error in the ith solution vector:
                    abs(XTRUE(j,i) - X(j,i))
             max_j ----------------------
                         abs(X(j,i))

     The array is indexed by the right-hand side i (on which the
     componentwise relative error depends), and the type of error
     information as described below. There currently are up to three
     pieces of information returned for each right-hand side. If
     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
     the first (:,N_ERR_BNDS) entries are returned.

     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
     right-hand side.

     The second index in ERR_BNDS_COMP(:,err) contains the following
     three fields:
     err = 1 "Trust/don't trust" boolean. Trust the answer if the
              reciprocal condition number is less than the threshold
              sqrt(n) * dlamch('Epsilon').

     err = 2 "Guaranteed" error bound: The estimated forward error,
              almost certainly within a factor of 10 of the true error
              so long as the next entry is greater than the threshold
              sqrt(n) * dlamch('Epsilon'). This error bound should only
              be trusted if the previous boolean is true.

     err = 3  Reciprocal condition number: Estimated componentwise
              reciprocal condition number.  Compared with the threshold
              sqrt(n) * dlamch('Epsilon') to determine if the error
              estimate is "guaranteed". These reciprocal condition
              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
              appropriately scaled matrix Z.
              Let Z = S*(A*diag(x)), where x is the solution for the
              current right-hand side and S scales each row of
              A*diag(x) by a power of the radix so all absolute row
              sums of Z are approximately 1.

     See Lapack Working Note 165 for further details and extra
     cautions.
[in]NPARAMS
          NPARAMS is INTEGER
     Specifies the number of parameters set in PARAMS.  If <= 0, the
     PARAMS array is never referenced and default values are used.
[in,out]PARAMS
          PARAMS is DOUBLE PRECISION array, dimension (NPARAMS)
     Specifies algorithm parameters.  If an entry is < 0.0, then
     that entry will be filled with default value used for that
     parameter.  Only positions up to NPARAMS are accessed; defaults
     are used for higher-numbered parameters.

       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
            refinement or not.
         Default: 1.0D+0
            = 0.0:  No refinement is performed, and no error bounds are
                    computed.
            = 1.0:  Use the double-precision refinement algorithm,
                    possibly with doubled-single computations if the
                    compilation environment does not support DOUBLE
                    PRECISION.
              (other values are reserved for future use)

       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
            computations allowed for refinement.
         Default: 10
         Aggressive: Set to 100 to permit convergence using approximate
                     factorizations or factorizations other than LU. If
                     the factorization uses a technique other than
                     Gaussian elimination, the guarantees in
                     err_bnds_norm and err_bnds_comp may no longer be
                     trustworthy.

       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
            will attempt to find a solution with small componentwise
            relative error in the double-precision algorithm.  Positive
            is true, 0.0 is false.
         Default: 1.0 (attempt componentwise convergence)
[out]WORK
          WORK is DOUBLE PRECISION array, dimension (4*N)
[out]IWORK
          IWORK is INTEGER array, dimension (N)
[out]INFO
          INFO is INTEGER
       = 0:  Successful exit. The solution to every right-hand side is
         guaranteed.
       < 0:  If INFO = -i, the i-th argument had an illegal value
       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
         has been completed, but the factor U is exactly singular, so
         the solution and error bounds could not be computed. RCOND = 0
         is returned.
       = N+J: The solution corresponding to the Jth right-hand side is
         not guaranteed. The solutions corresponding to other right-
         hand sides K with K > J may not be guaranteed as well, but
         only the first such right-hand side is reported. If a small
         componentwise error is not requested (PARAMS(3) = 0.0) then
         the Jth right-hand side is the first with a normwise error
         bound that is not guaranteed (the smallest J such
         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
         the Jth right-hand side is the first with either a normwise or
         componentwise error bound that is not guaranteed (the smallest
         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
         about all of the right-hand sides check ERR_BNDS_NORM or
         ERR_BNDS_COMP.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 390 of file dporfsx.f.

394*
395* -- LAPACK computational routine --
396* -- LAPACK is a software package provided by Univ. of Tennessee, --
397* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
398*
399* .. Scalar Arguments ..
400 CHARACTER UPLO, EQUED
401 INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
402 $ N_ERR_BNDS
403 DOUBLE PRECISION RCOND
404* ..
405* .. Array Arguments ..
406 INTEGER IWORK( * )
407 DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
408 $ X( LDX, * ), WORK( * )
409 DOUBLE PRECISION S( * ), PARAMS( * ), BERR( * ),
410 $ ERR_BNDS_NORM( NRHS, * ),
411 $ ERR_BNDS_COMP( NRHS, * )
412* ..
413*
414* ==================================================================
415*
416* .. Parameters ..
417 DOUBLE PRECISION ZERO, ONE
418 parameter( zero = 0.0d+0, one = 1.0d+0 )
419 DOUBLE PRECISION ITREF_DEFAULT, ITHRESH_DEFAULT
420 DOUBLE PRECISION COMPONENTWISE_DEFAULT, RTHRESH_DEFAULT
421 DOUBLE PRECISION DZTHRESH_DEFAULT
422 parameter( itref_default = 1.0d+0 )
423 parameter( ithresh_default = 10.0d+0 )
424 parameter( componentwise_default = 1.0d+0 )
425 parameter( rthresh_default = 0.5d+0 )
426 parameter( dzthresh_default = 0.25d+0 )
427 INTEGER LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
428 $ LA_LINRX_CWISE_I
429 parameter( la_linrx_itref_i = 1,
430 $ la_linrx_ithresh_i = 2 )
431 parameter( la_linrx_cwise_i = 3 )
432 INTEGER LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
433 $ LA_LINRX_RCOND_I
434 parameter( la_linrx_trust_i = 1, la_linrx_err_i = 2 )
435 parameter( la_linrx_rcond_i = 3 )
436* ..
437* .. Local Scalars ..
438 CHARACTER(1) NORM
439 LOGICAL RCEQU
440 INTEGER J, PREC_TYPE, REF_TYPE
441 INTEGER N_NORMS
442 DOUBLE PRECISION ANORM, RCOND_TMP
443 DOUBLE PRECISION ILLRCOND_THRESH, ERR_LBND, CWISE_WRONG
444 LOGICAL IGNORE_CWISE
445 INTEGER ITHRESH
446 DOUBLE PRECISION RTHRESH, UNSTABLE_THRESH
447* ..
448* .. External Subroutines ..
450* ..
451* .. Intrinsic Functions ..
452 INTRINSIC max, sqrt
453* ..
454* .. External Functions ..
455 EXTERNAL lsame, ilaprec
456 EXTERNAL dlamch, dlansy, dla_porcond
457 DOUBLE PRECISION DLAMCH, DLANSY, DLA_PORCOND
458 LOGICAL LSAME
459 INTEGER ILAPREC
460* ..
461* .. Executable Statements ..
462*
463* Check the input parameters.
464*
465 info = 0
466 ref_type = int( itref_default )
467 IF ( nparams .GE. la_linrx_itref_i ) THEN
468 IF ( params( la_linrx_itref_i ) .LT. 0.0d+0 ) THEN
469 params( la_linrx_itref_i ) = itref_default
470 ELSE
471 ref_type = params( la_linrx_itref_i )
472 END IF
473 END IF
474*
475* Set default parameters.
476*
477 illrcond_thresh = dble( n ) * dlamch( 'Epsilon' )
478 ithresh = int( ithresh_default )
479 rthresh = rthresh_default
480 unstable_thresh = dzthresh_default
481 ignore_cwise = componentwise_default .EQ. 0.0d+0
482*
483 IF ( nparams.GE.la_linrx_ithresh_i ) THEN
484 IF ( params( la_linrx_ithresh_i ).LT.0.0d+0 ) THEN
485 params( la_linrx_ithresh_i ) = ithresh
486 ELSE
487 ithresh = int( params( la_linrx_ithresh_i ) )
488 END IF
489 END IF
490 IF ( nparams.GE.la_linrx_cwise_i ) THEN
491 IF ( params( la_linrx_cwise_i ).LT.0.0d+0 ) THEN
492 IF ( ignore_cwise ) THEN
493 params( la_linrx_cwise_i ) = 0.0d+0
494 ELSE
495 params( la_linrx_cwise_i ) = 1.0d+0
496 END IF
497 ELSE
498 ignore_cwise = params( la_linrx_cwise_i ) .EQ. 0.0d+0
499 END IF
500 END IF
501 IF ( ref_type .EQ. 0 .OR. n_err_bnds .EQ. 0 ) THEN
502 n_norms = 0
503 ELSE IF ( ignore_cwise ) THEN
504 n_norms = 1
505 ELSE
506 n_norms = 2
507 END IF
508*
509 rcequ = lsame( equed, 'Y' )
510*
511* Test input parameters.
512*
513 IF (.NOT.lsame(uplo, 'U') .AND. .NOT.lsame(uplo, 'L')) THEN
514 info = -1
515 ELSE IF( .NOT.rcequ .AND. .NOT.lsame( equed, 'N' ) ) THEN
516 info = -2
517 ELSE IF( n.LT.0 ) THEN
518 info = -3
519 ELSE IF( nrhs.LT.0 ) THEN
520 info = -4
521 ELSE IF( lda.LT.max( 1, n ) ) THEN
522 info = -6
523 ELSE IF( ldaf.LT.max( 1, n ) ) THEN
524 info = -8
525 ELSE IF( ldb.LT.max( 1, n ) ) THEN
526 info = -11
527 ELSE IF( ldx.LT.max( 1, n ) ) THEN
528 info = -13
529 END IF
530 IF( info.NE.0 ) THEN
531 CALL xerbla( 'DPORFSX', -info )
532 RETURN
533 END IF
534*
535* Quick return if possible.
536*
537 IF( n.EQ.0 .OR. nrhs.EQ.0 ) THEN
538 rcond = 1.0d+0
539 DO j = 1, nrhs
540 berr( j ) = 0.0d+0
541 IF ( n_err_bnds .GE. 1 ) THEN
542 err_bnds_norm( j, la_linrx_trust_i ) = 1.0d+0
543 err_bnds_comp( j, la_linrx_trust_i ) = 1.0d+0
544 END IF
545 IF ( n_err_bnds .GE. 2 ) THEN
546 err_bnds_norm( j, la_linrx_err_i ) = 0.0d+0
547 err_bnds_comp( j, la_linrx_err_i ) = 0.0d+0
548 END IF
549 IF ( n_err_bnds .GE. 3 ) THEN
550 err_bnds_norm( j, la_linrx_rcond_i ) = 1.0d+0
551 err_bnds_comp( j, la_linrx_rcond_i ) = 1.0d+0
552 END IF
553 END DO
554 RETURN
555 END IF
556*
557* Default to failure.
558*
559 rcond = 0.0d+0
560 DO j = 1, nrhs
561 berr( j ) = 1.0d+0
562 IF ( n_err_bnds .GE. 1 ) THEN
563 err_bnds_norm( j, la_linrx_trust_i ) = 1.0d+0
564 err_bnds_comp( j, la_linrx_trust_i ) = 1.0d+0
565 END IF
566 IF ( n_err_bnds .GE. 2 ) THEN
567 err_bnds_norm( j, la_linrx_err_i ) = 1.0d+0
568 err_bnds_comp( j, la_linrx_err_i ) = 1.0d+0
569 END IF
570 IF ( n_err_bnds .GE. 3 ) THEN
571 err_bnds_norm( j, la_linrx_rcond_i ) = 0.0d+0
572 err_bnds_comp( j, la_linrx_rcond_i ) = 0.0d+0
573 END IF
574 END DO
575*
576* Compute the norm of A and the reciprocal of the condition
577* number of A.
578*
579 norm = 'I'
580 anorm = dlansy( norm, uplo, n, a, lda, work )
581 CALL dpocon( uplo, n, af, ldaf, anorm, rcond, work,
582 $ iwork, info )
583*
584* Perform refinement on each right-hand side
585*
586 IF ( ref_type .NE. 0 ) THEN
587
588 prec_type = ilaprec( 'E' )
589
590 CALL dla_porfsx_extended( prec_type, uplo, n,
591 $ nrhs, a, lda, af, ldaf, rcequ, s, b,
592 $ ldb, x, ldx, berr, n_norms, err_bnds_norm, err_bnds_comp,
593 $ work( n+1 ), work( 1 ), work( 2*n+1 ), work( 1 ), rcond,
594 $ ithresh, rthresh, unstable_thresh, ignore_cwise,
595 $ info )
596 END IF
597
598 err_lbnd = max( 10.0d+0, sqrt( dble( n ) ) ) * dlamch( 'Epsilon' )
599 IF ( n_err_bnds .GE. 1 .AND. n_norms .GE. 1 ) THEN
600*
601* Compute scaled normwise condition number cond(A*C).
602*
603 IF ( rcequ ) THEN
604 rcond_tmp = dla_porcond( uplo, n, a, lda, af, ldaf,
605 $ -1, s, info, work, iwork )
606 ELSE
607 rcond_tmp = dla_porcond( uplo, n, a, lda, af, ldaf,
608 $ 0, s, info, work, iwork )
609 END IF
610 DO j = 1, nrhs
611*
612* Cap the error at 1.0.
613*
614 IF ( n_err_bnds .GE. la_linrx_err_i
615 $ .AND. err_bnds_norm( j, la_linrx_err_i ) .GT. 1.0d+0 )
616 $ err_bnds_norm( j, la_linrx_err_i ) = 1.0d+0
617*
618* Threshold the error (see LAWN).
619*
620 IF ( rcond_tmp .LT. illrcond_thresh ) THEN
621 err_bnds_norm( j, la_linrx_err_i ) = 1.0d+0
622 err_bnds_norm( j, la_linrx_trust_i ) = 0.0d+0
623 IF ( info .LE. n ) info = n + j
624 ELSE IF ( err_bnds_norm( j, la_linrx_err_i ) .LT. err_lbnd )
625 $ THEN
626 err_bnds_norm( j, la_linrx_err_i ) = err_lbnd
627 err_bnds_norm( j, la_linrx_trust_i ) = 1.0d+0
628 END IF
629*
630* Save the condition number.
631*
632 IF (n_err_bnds .GE. la_linrx_rcond_i) THEN
633 err_bnds_norm( j, la_linrx_rcond_i ) = rcond_tmp
634 END IF
635 END DO
636 END IF
637
638 IF ( n_err_bnds .GE. 1 .AND. n_norms .GE. 2 ) THEN
639*
640* Compute componentwise condition number cond(A*diag(Y(:,J))) for
641* each right-hand side using the current solution as an estimate of
642* the true solution. If the componentwise error estimate is too
643* large, then the solution is a lousy estimate of truth and the
644* estimated RCOND may be too optimistic. To avoid misleading users,
645* the inverse condition number is set to 0.0 when the estimated
646* cwise error is at least CWISE_WRONG.
647*
648 cwise_wrong = sqrt( dlamch( 'Epsilon' ) )
649 DO j = 1, nrhs
650 IF (err_bnds_comp( j, la_linrx_err_i ) .LT. cwise_wrong )
651 $ THEN
652 rcond_tmp = dla_porcond( uplo, n, a, lda, af, ldaf, 1,
653 $ x( 1, j ), info, work, iwork )
654 ELSE
655 rcond_tmp = 0.0d+0
656 END IF
657*
658* Cap the error at 1.0.
659*
660 IF ( n_err_bnds .GE. la_linrx_err_i
661 $ .AND. err_bnds_comp( j, la_linrx_err_i ) .GT. 1.0d+0 )
662 $ err_bnds_comp( j, la_linrx_err_i ) = 1.0d+0
663*
664* Threshold the error (see LAWN).
665*
666 IF ( rcond_tmp .LT. illrcond_thresh ) THEN
667 err_bnds_comp( j, la_linrx_err_i ) = 1.0d+0
668 err_bnds_comp( j, la_linrx_trust_i ) = 0.0d+0
669 IF ( params( la_linrx_cwise_i ) .EQ. 1.0d+0
670 $ .AND. info.LT.n + j ) info = n + j
671 ELSE IF ( err_bnds_comp( j, la_linrx_err_i )
672 $ .LT. err_lbnd ) THEN
673 err_bnds_comp( j, la_linrx_err_i ) = err_lbnd
674 err_bnds_comp( j, la_linrx_trust_i ) = 1.0d+0
675 END IF
676*
677* Save the condition number.
678*
679 IF ( n_err_bnds .GE. la_linrx_rcond_i ) THEN
680 err_bnds_comp( j, la_linrx_rcond_i ) = rcond_tmp
681 END IF
682
683 END DO
684 END IF
685*
686 RETURN
687*
688* End of DPORFSX
689*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
integer function ilaprec(prec)
ILAPREC
Definition ilaprec.f:58
double precision function dla_porcond(uplo, n, a, lda, af, ldaf, cmode, c, info, work, iwork)
DLA_PORCOND estimates the Skeel condition number for a symmetric positive-definite matrix.
subroutine dla_porfsx_extended(prec_type, uplo, n, nrhs, a, lda, af, ldaf, colequ, c, b, ldb, y, ldy, berr_out, n_norms, err_bnds_norm, err_bnds_comp, res, ayb, dy, y_tail, rcond, ithresh, rthresh, dz_ub, ignore_cwise, info)
DLA_PORFSX_EXTENDED improves the computed solution to a system of linear equations for symmetric or H...
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
double precision function dlansy(norm, uplo, n, a, lda, work)
DLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition dlansy.f:122
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine dpocon(uplo, n, a, lda, anorm, rcond, work, iwork, info)
DPOCON
Definition dpocon.f:121
Here is the call graph for this function:
Here is the caller graph for this function: