140 $ CMODE, C, INFO, WORK,
149 INTEGER n, lda, ldaf, info, cmode
150 DOUBLE PRECISION a( lda, * ), af( ldaf, * ), work( * ),
161 DOUBLE PRECISION ainvnm, tmp
186 CALL xerbla(
'DLA_PORCOND', -info )
195 IF (
lsame( uplo,
'U' ) ) up = .true.
203 IF ( cmode .EQ. 1 )
THEN
205 tmp = tmp + abs( a( j, i ) * c( j ) )
208 tmp = tmp + abs( a( i, j ) * c( j ) )
210 ELSE IF ( cmode .EQ. 0 )
THEN
212 tmp = tmp + abs( a( j, i ) )
215 tmp = tmp + abs( a( i, j ) )
219 tmp = tmp + abs( a( j ,i ) / c( j ) )
222 tmp = tmp + abs( a( i, j ) / c( j ) )
230 IF ( cmode .EQ. 1 )
THEN
232 tmp = tmp + abs( a( i, j ) * c( j ) )
235 tmp = tmp + abs( a( j, i ) * c( j ) )
237 ELSE IF ( cmode .EQ. 0 )
THEN
239 tmp = tmp + abs( a( i, j ) )
242 tmp = tmp + abs( a( j, i ) )
246 tmp = tmp + abs( a( i, j ) / c( j ) )
249 tmp = tmp + abs( a( j, i ) / c( j ) )
262 CALL dlacn2( n, work( n+1 ), work, iwork, ainvnm, kase, isave )
269 work( i ) = work( i ) * work( 2*n+i )
273 CALL dpotrs(
'Upper', n, 1, af, ldaf, work, n, info )
275 CALL dpotrs(
'Lower', n, 1, af, ldaf, work, n, info )
280 IF ( cmode .EQ. 1 )
THEN
282 work( i ) = work( i ) / c( i )
284 ELSE IF ( cmode .EQ. -1 )
THEN
286 work( i ) = work( i ) * c( i )
293 IF ( cmode .EQ. 1 )
THEN
295 work( i ) = work( i ) / c( i )
297 ELSE IF ( cmode .EQ. -1 )
THEN
299 work( i ) = work( i ) * c( i )
304 CALL dpotrs(
'Upper', n, 1, af, ldaf, work, n, info )
306 CALL dpotrs(
'Lower', n, 1, af, ldaf, work, n, info )
312 work( i ) = work( i ) * work( 2*n+i )
320 IF( ainvnm .NE. 0.0d+0 )
subroutine xerbla(SRNAME, INFO)
XERBLA
logical function lsame(CA, CB)
LSAME
subroutine dlacn2(N, V, X, ISGN, EST, KASE, ISAVE)
DLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
subroutine dpotrs(UPLO, N, NRHS, A, LDA, B, LDB, INFO)
DPOTRS
double precision function dla_porcond(UPLO, N, A, LDA, AF, LDAF, CMODE, C, INFO, WORK, IWORK)
DLA_PORCOND estimates the Skeel condition number for a symmetric positive-definite matrix.