139 $ CMODE, C, INFO, WORK,
148 INTEGER n, lda, ldaf, info, cmode
149 DOUBLE PRECISION a( lda, * ), af( ldaf, * ), work( * ),
160 DOUBLE PRECISION ainvnm, tmp
185 CALL xerbla(
'DLA_PORCOND', -info )
194 IF (
lsame( uplo,
'U' ) ) up = .true.
202 IF ( cmode .EQ. 1 )
THEN
204 tmp = tmp + abs( a( j, i ) * c( j ) )
207 tmp = tmp + abs( a( i, j ) * c( j ) )
209 ELSE IF ( cmode .EQ. 0 )
THEN
211 tmp = tmp + abs( a( j, i ) )
214 tmp = tmp + abs( a( i, j ) )
218 tmp = tmp + abs( a( j ,i ) / c( j ) )
221 tmp = tmp + abs( a( i, j ) / c( j ) )
229 IF ( cmode .EQ. 1 )
THEN
231 tmp = tmp + abs( a( i, j ) * c( j ) )
234 tmp = tmp + abs( a( j, i ) * c( j ) )
236 ELSE IF ( cmode .EQ. 0 )
THEN
238 tmp = tmp + abs( a( i, j ) )
241 tmp = tmp + abs( a( j, i ) )
245 tmp = tmp + abs( a( i, j ) / c( j ) )
248 tmp = tmp + abs( a( j, i ) / c( j ) )
261 CALL dlacn2( n, work( n+1 ), work, iwork, ainvnm, kase, isave )
268 work( i ) = work( i ) * work( 2*n+i )
272 CALL dpotrs(
'Upper', n, 1, af, ldaf, work, n, info )
274 CALL dpotrs(
'Lower', n, 1, af, ldaf, work, n, info )
279 IF ( cmode .EQ. 1 )
THEN
281 work( i ) = work( i ) / c( i )
283 ELSE IF ( cmode .EQ. -1 )
THEN
285 work( i ) = work( i ) * c( i )
292 IF ( cmode .EQ. 1 )
THEN
294 work( i ) = work( i ) / c( i )
296 ELSE IF ( cmode .EQ. -1 )
THEN
298 work( i ) = work( i ) * c( i )
303 CALL dpotrs(
'Upper', n, 1, af, ldaf, work, n, info )
305 CALL dpotrs(
'Lower', n, 1, af, ldaf, work, n, info )
311 work( i ) = work( i ) * work( 2*n+i )
319 IF( ainvnm .NE. 0.0d+0 )
double precision function dla_porcond(uplo, n, a, lda, af, ldaf, cmode, c, info, work, iwork)
DLA_PORCOND estimates the Skeel condition number for a symmetric positive-definite matrix.
subroutine dlacn2(n, v, x, isgn, est, kase, isave)
DLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...