LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cgeqrt()

subroutine cgeqrt ( integer  m,
integer  n,
integer  nb,
complex, dimension( lda, * )  a,
integer  lda,
complex, dimension( ldt, * )  t,
integer  ldt,
complex, dimension( * )  work,
integer  info 
)

CGEQRT

Download CGEQRT + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 CGEQRT computes a blocked QR factorization of a complex M-by-N matrix A
 using the compact WY representation of Q.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= 0.
[in]NB
          NB is INTEGER
          The block size to be used in the blocked QR.  MIN(M,N) >= NB >= 1.
[in,out]A
          A is COMPLEX array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, the elements on and above the diagonal of the array
          contain the min(M,N)-by-N upper trapezoidal matrix R (R is
          upper triangular if M >= N); the elements below the diagonal
          are the columns of V.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
[out]T
          T is COMPLEX array, dimension (LDT,MIN(M,N))
          The upper triangular block reflectors stored in compact form
          as a sequence of upper triangular blocks.  See below
          for further details.
[in]LDT
          LDT is INTEGER
          The leading dimension of the array T.  LDT >= NB.
[out]WORK
          WORK is COMPLEX array, dimension (NB*N)
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
  The matrix V stores the elementary reflectors H(i) in the i-th column
  below the diagonal. For example, if M=5 and N=3, the matrix V is

               V = (  1       )
                   ( v1  1    )
                   ( v1 v2  1 )
                   ( v1 v2 v3 )
                   ( v1 v2 v3 )

  where the vi's represent the vectors which define H(i), which are returned
  in the matrix A.  The 1's along the diagonal of V are not stored in A.

  Let K=MIN(M,N).  The number of blocks is B = ceiling(K/NB), where each
  block is of order NB except for the last block, which is of order
  IB = K - (B-1)*NB.  For each of the B blocks, a upper triangular block
  reflector factor is computed: T1, T2, ..., TB.  The NB-by-NB (and IB-by-IB
  for the last block) T's are stored in the NB-by-K matrix T as

               T = (T1 T2 ... TB).

Definition at line 140 of file cgeqrt.f.

141*
142* -- LAPACK computational routine --
143* -- LAPACK is a software package provided by Univ. of Tennessee, --
144* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
145*
146* .. Scalar Arguments ..
147 INTEGER INFO, LDA, LDT, M, N, NB
148* ..
149* .. Array Arguments ..
150 COMPLEX A( LDA, * ), T( LDT, * ), WORK( * )
151* ..
152*
153* =====================================================================
154*
155* ..
156* .. Local Scalars ..
157 INTEGER I, IB, IINFO, K
158 LOGICAL USE_RECURSIVE_QR
159 parameter( use_recursive_qr=.true. )
160* ..
161* .. External Subroutines ..
162 EXTERNAL cgeqrt2, cgeqrt3, clarfb, xerbla
163* ..
164* .. Executable Statements ..
165*
166* Test the input arguments
167*
168 info = 0
169 IF( m.LT.0 ) THEN
170 info = -1
171 ELSE IF( n.LT.0 ) THEN
172 info = -2
173 ELSE IF( nb.LT.1 .OR. ( nb.GT.min(m,n) .AND. min(m,n).GT.0 ) )THEN
174 info = -3
175 ELSE IF( lda.LT.max( 1, m ) ) THEN
176 info = -5
177 ELSE IF( ldt.LT.nb ) THEN
178 info = -7
179 END IF
180 IF( info.NE.0 ) THEN
181 CALL xerbla( 'CGEQRT', -info )
182 RETURN
183 END IF
184*
185* Quick return if possible
186*
187 k = min( m, n )
188 IF( k.EQ.0 ) RETURN
189*
190* Blocked loop of length K
191*
192 DO i = 1, k, nb
193 ib = min( k-i+1, nb )
194*
195* Compute the QR factorization of the current block A(I:M,I:I+IB-1)
196*
197 IF( use_recursive_qr ) THEN
198 CALL cgeqrt3( m-i+1, ib, a(i,i), lda, t(1,i), ldt, iinfo )
199 ELSE
200 CALL cgeqrt2( m-i+1, ib, a(i,i), lda, t(1,i), ldt, iinfo )
201 END IF
202 IF( i+ib.LE.n ) THEN
203*
204* Update by applying H**H to A(I:M,I+IB:N) from the left
205*
206 CALL clarfb( 'L', 'C', 'F', 'C', m-i+1, n-i-ib+1, ib,
207 $ a( i, i ), lda, t( 1, i ), ldt,
208 $ a( i, i+ib ), lda, work , n-i-ib+1 )
209 END IF
210 END DO
211 RETURN
212*
213* End of CGEQRT
214*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine cgeqrt2(m, n, a, lda, t, ldt, info)
CGEQRT2 computes a QR factorization of a general real or complex matrix using the compact WY represen...
Definition cgeqrt2.f:127
recursive subroutine cgeqrt3(m, n, a, lda, t, ldt, info)
CGEQRT3 recursively computes a QR factorization of a general real or complex matrix using the compact...
Definition cgeqrt3.f:132
subroutine clarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)
CLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix.
Definition clarfb.f:197
Here is the call graph for this function:
Here is the caller graph for this function: