LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cgeqrt3.f
Go to the documentation of this file.
1*> \brief <b> CGEQRT3 recursively computes a QR factorization of a general real or complex matrix using the compact WY representation of Q. </b>
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CGEQRT3 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeqrt3.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeqrt3.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeqrt3.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* RECURSIVE SUBROUTINE CGEQRT3( M, N, A, LDA, T, LDT, INFO )
22*
23* .. Scalar Arguments ..
24* INTEGER INFO, LDA, M, N, LDT
25* ..
26* .. Array Arguments ..
27* COMPLEX A( LDA, * ), T( LDT, * )
28* ..
29*
30*
31*> \par Purpose:
32* =============
33*>
34*> \verbatim
35*>
36*> CGEQRT3 recursively computes a QR factorization of a complex M-by-N matrix A,
37*> using the compact WY representation of Q.
38*>
39*> Based on the algorithm of Elmroth and Gustavson,
40*> IBM J. Res. Develop. Vol 44 No. 4 July 2000.
41*> \endverbatim
42*
43* Arguments:
44* ==========
45*
46*> \param[in] M
47*> \verbatim
48*> M is INTEGER
49*> The number of rows of the matrix A. M >= N.
50*> \endverbatim
51*>
52*> \param[in] N
53*> \verbatim
54*> N is INTEGER
55*> The number of columns of the matrix A. N >= 0.
56*> \endverbatim
57*>
58*> \param[in,out] A
59*> \verbatim
60*> A is COMPLEX array, dimension (LDA,N)
61*> On entry, the complex M-by-N matrix A. On exit, the elements on and
62*> above the diagonal contain the N-by-N upper triangular matrix R; the
63*> elements below the diagonal are the columns of V. See below for
64*> further details.
65*> \endverbatim
66*>
67*> \param[in] LDA
68*> \verbatim
69*> LDA is INTEGER
70*> The leading dimension of the array A. LDA >= max(1,M).
71*> \endverbatim
72*>
73*> \param[out] T
74*> \verbatim
75*> T is COMPLEX array, dimension (LDT,N)
76*> The N-by-N upper triangular factor of the block reflector.
77*> The elements on and above the diagonal contain the block
78*> reflector T; the elements below the diagonal are not used.
79*> See below for further details.
80*> \endverbatim
81*>
82*> \param[in] LDT
83*> \verbatim
84*> LDT is INTEGER
85*> The leading dimension of the array T. LDT >= max(1,N).
86*> \endverbatim
87*>
88*> \param[out] INFO
89*> \verbatim
90*> INFO is INTEGER
91*> = 0: successful exit
92*> < 0: if INFO = -i, the i-th argument had an illegal value
93*> \endverbatim
94*
95* Authors:
96* ========
97*
98*> \author Univ. of Tennessee
99*> \author Univ. of California Berkeley
100*> \author Univ. of Colorado Denver
101*> \author NAG Ltd.
102*
103*> \ingroup geqrt3
104*
105*> \par Further Details:
106* =====================
107*>
108*> \verbatim
109*>
110*> The matrix V stores the elementary reflectors H(i) in the i-th column
111*> below the diagonal. For example, if M=5 and N=3, the matrix V is
112*>
113*> V = ( 1 )
114*> ( v1 1 )
115*> ( v1 v2 1 )
116*> ( v1 v2 v3 )
117*> ( v1 v2 v3 )
118*>
119*> where the vi's represent the vectors which define H(i), which are returned
120*> in the matrix A. The 1's along the diagonal of V are not stored in A. The
121*> block reflector H is then given by
122*>
123*> H = I - V * T * V**H
124*>
125*> where V**H is the conjugate transpose of V.
126*>
127*> For details of the algorithm, see Elmroth and Gustavson (cited above).
128*> \endverbatim
129*>
130* =====================================================================
131 RECURSIVE SUBROUTINE cgeqrt3( M, N, A, LDA, T, LDT, INFO )
132*
133* -- LAPACK computational routine --
134* -- LAPACK is a software package provided by Univ. of Tennessee, --
135* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
136*
137* .. Scalar Arguments ..
138 INTEGER info, lda, m, n, ldt
139* ..
140* .. Array Arguments ..
141 COMPLEX a( lda, * ), t( ldt, * )
142* ..
143*
144* =====================================================================
145*
146* .. Parameters ..
147 COMPLEX one
148 parameter( one = (1.0,0.0) )
149* ..
150* .. Local Scalars ..
151 INTEGER i, i1, j, j1, n1, n2, iinfo
152* ..
153* .. External Subroutines ..
154 EXTERNAL clarfg, ctrmm, cgemm, xerbla
155* ..
156* .. Executable Statements ..
157*
158 info = 0
159 IF( n .LT. 0 ) THEN
160 info = -2
161 ELSE IF( m .LT. n ) THEN
162 info = -1
163 ELSE IF( lda .LT. max( 1, m ) ) THEN
164 info = -4
165 ELSE IF( ldt .LT. max( 1, n ) ) THEN
166 info = -6
167 END IF
168 IF( info.NE.0 ) THEN
169 CALL xerbla( 'CGEQRT3', -info )
170 RETURN
171 END IF
172*
173 IF( n.EQ.1 ) THEN
174*
175* Compute Householder transform when N=1
176*
177 CALL clarfg( m, a(1,1), a( min( 2, m ), 1 ), 1, t(1,1) )
178*
179 ELSE
180*
181* Otherwise, split A into blocks...
182*
183 n1 = n/2
184 n2 = n-n1
185 j1 = min( n1+1, n )
186 i1 = min( n+1, m )
187*
188* Compute A(1:M,1:N1) <- (Y1,R1,T1), where Q1 = I - Y1 T1 Y1**H
189*
190 CALL cgeqrt3( m, n1, a, lda, t, ldt, iinfo )
191*
192* Compute A(1:M,J1:N) = Q1**H A(1:M,J1:N) [workspace: T(1:N1,J1:N)]
193*
194 DO j=1,n2
195 DO i=1,n1
196 t( i, j+n1 ) = a( i, j+n1 )
197 END DO
198 END DO
199 CALL ctrmm( 'L', 'L', 'C', 'U', n1, n2, one,
200 & a, lda, t( 1, j1 ), ldt )
201*
202 CALL cgemm( 'C', 'N', n1, n2, m-n1, one, a( j1, 1 ), lda,
203 & a( j1, j1 ), lda, one, t( 1, j1 ), ldt)
204*
205 CALL ctrmm( 'L', 'U', 'C', 'N', n1, n2, one,
206 & t, ldt, t( 1, j1 ), ldt )
207*
208 CALL cgemm( 'N', 'N', m-n1, n2, n1, -one, a( j1, 1 ), lda,
209 & t( 1, j1 ), ldt, one, a( j1, j1 ), lda )
210*
211 CALL ctrmm( 'L', 'L', 'N', 'U', n1, n2, one,
212 & a, lda, t( 1, j1 ), ldt )
213*
214 DO j=1,n2
215 DO i=1,n1
216 a( i, j+n1 ) = a( i, j+n1 ) - t( i, j+n1 )
217 END DO
218 END DO
219*
220* Compute A(J1:M,J1:N) <- (Y2,R2,T2) where Q2 = I - Y2 T2 Y2**H
221*
222 CALL cgeqrt3( m-n1, n2, a( j1, j1 ), lda,
223 & t( j1, j1 ), ldt, iinfo )
224*
225* Compute T3 = T(1:N1,J1:N) = -T1 Y1**H Y2 T2
226*
227 DO i=1,n1
228 DO j=1,n2
229 t( i, j+n1 ) = conjg(a( j+n1, i ))
230 END DO
231 END DO
232*
233 CALL ctrmm( 'R', 'L', 'N', 'U', n1, n2, one,
234 & a( j1, j1 ), lda, t( 1, j1 ), ldt )
235*
236 CALL cgemm( 'C', 'N', n1, n2, m-n, one, a( i1, 1 ), lda,
237 & a( i1, j1 ), lda, one, t( 1, j1 ), ldt )
238*
239 CALL ctrmm( 'L', 'U', 'N', 'N', n1, n2, -one, t, ldt,
240 & t( 1, j1 ), ldt )
241*
242 CALL ctrmm( 'R', 'U', 'N', 'N', n1, n2, one,
243 & t( j1, j1 ), ldt, t( 1, j1 ), ldt )
244*
245* Y = (Y1,Y2); R = [ R1 A(1:N1,J1:N) ]; T = [T1 T3]
246* [ 0 R2 ] [ 0 T2]
247*
248 END IF
249*
250 RETURN
251*
252* End of CGEQRT3
253*
254 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine cgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
CGEMM
Definition cgemm.f:188
recursive subroutine cgeqrt3(m, n, a, lda, t, ldt, info)
CGEQRT3 recursively computes a QR factorization of a general real or complex matrix using the compact...
Definition cgeqrt3.f:132
subroutine clarfg(n, alpha, x, incx, tau)
CLARFG generates an elementary reflector (Householder matrix).
Definition clarfg.f:106
subroutine ctrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
CTRMM
Definition ctrmm.f:177