LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ ctrt02()

subroutine ctrt02 ( character uplo,
character trans,
character diag,
integer n,
integer nrhs,
complex, dimension( lda, * ) a,
integer lda,
complex, dimension( ldx, * ) x,
integer ldx,
complex, dimension( ldb, * ) b,
integer ldb,
complex, dimension( * ) work,
real, dimension( * ) rwork,
real resid )

CTRT02

Purpose:
!> !> CTRT02 computes the residual for the computed solution to a !> triangular system of linear equations op(A)*X = B, where A is a !> triangular matrix. The test ratio is the maximum over !> norm(b - op(A)*x) / ( ||op(A)||_1 * norm(x) * EPS ), !> where op(A) = A, A**T, or A**H, b is the column of B, x is the !> solution vector, and EPS is the machine epsilon. !>
Parameters
[in]UPLO
!> UPLO is CHARACTER*1 !> Specifies whether the matrix A is upper or lower triangular. !> = 'U': Upper triangular !> = 'L': Lower triangular !>
[in]TRANS
!> TRANS is CHARACTER*1 !> Specifies the operation applied to A. !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate transpose) !>
[in]DIAG
!> DIAG is CHARACTER*1 !> Specifies whether or not the matrix A is unit triangular. !> = 'N': Non-unit triangular !> = 'U': Unit triangular !>
[in]N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
[in]NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrices X and B. NRHS >= 0. !>
[in]A
!> A is COMPLEX array, dimension (LDA,N) !> The triangular matrix A. If UPLO = 'U', the leading n by n !> upper triangular part of the array A contains the upper !> triangular matrix, and the strictly lower triangular part of !> A is not referenced. If UPLO = 'L', the leading n by n lower !> triangular part of the array A contains the lower triangular !> matrix, and the strictly upper triangular part of A is not !> referenced. If DIAG = 'U', the diagonal elements of A are !> also not referenced and are assumed to be 1. !>
[in]LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
[in]X
!> X is COMPLEX array, dimension (LDX,NRHS) !> The computed solution vectors for the system of linear !> equations. !>
[in]LDX
!> LDX is INTEGER !> The leading dimension of the array X. LDX >= max(1,N). !>
[in]B
!> B is COMPLEX array, dimension (LDB,NRHS) !> The right hand side vectors for the system of linear !> equations. !>
[in]LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
[out]WORK
!> WORK is COMPLEX array, dimension (N) !>
[out]RWORK
!> RWORK is REAL array, dimension (N) !>
[out]RESID
!> RESID is REAL !> The maximum over the number of right hand sides of !> norm(op(A)*X - B) / ( norm(op(A)) * norm(X) * EPS ). !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 153 of file ctrt02.f.

155*
156* -- LAPACK test routine --
157* -- LAPACK is a software package provided by Univ. of Tennessee, --
158* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
159*
160* .. Scalar Arguments ..
161 CHARACTER DIAG, TRANS, UPLO
162 INTEGER LDA, LDB, LDX, N, NRHS
163 REAL RESID
164* ..
165* .. Array Arguments ..
166 REAL RWORK( * )
167 COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ),
168 $ X( LDX, * )
169* ..
170*
171* =====================================================================
172*
173* .. Parameters ..
174 REAL ZERO, ONE
175 parameter( zero = 0.0e+0, one = 1.0e+0 )
176* ..
177* .. Local Scalars ..
178 INTEGER J
179 REAL ANORM, BNORM, EPS, XNORM
180* ..
181* .. External Functions ..
182 LOGICAL LSAME
183 REAL CLANTR, SCASUM, SLAMCH
184 EXTERNAL lsame, clantr, scasum, slamch
185* ..
186* .. External Subroutines ..
187 EXTERNAL caxpy, ccopy, ctrmv
188* ..
189* .. Intrinsic Functions ..
190 INTRINSIC cmplx, max
191* ..
192* .. Executable Statements ..
193*
194* Quick exit if N = 0 or NRHS = 0
195*
196 IF( n.LE.0 .OR. nrhs.LE.0 ) THEN
197 resid = zero
198 RETURN
199 END IF
200*
201* Compute the 1-norm of op(A).
202*
203 IF( lsame( trans, 'N' ) ) THEN
204 anorm = clantr( '1', uplo, diag, n, n, a, lda, rwork )
205 ELSE
206 anorm = clantr( 'I', uplo, diag, n, n, a, lda, rwork )
207 END IF
208*
209* Exit with RESID = 1/EPS if ANORM = 0.
210*
211 eps = slamch( 'Epsilon' )
212 IF( anorm.LE.zero ) THEN
213 resid = one / eps
214 RETURN
215 END IF
216*
217* Compute the maximum over the number of right hand sides of
218* norm(op(A)*X - B) / ( norm(op(A)) * norm(X) * EPS )
219*
220 resid = zero
221 DO 10 j = 1, nrhs
222 CALL ccopy( n, x( 1, j ), 1, work, 1 )
223 CALL ctrmv( uplo, trans, diag, n, a, lda, work, 1 )
224 CALL caxpy( n, cmplx( -one ), b( 1, j ), 1, work, 1 )
225 bnorm = scasum( n, work, 1 )
226 xnorm = scasum( n, x( 1, j ), 1 )
227 IF( xnorm.LE.zero ) THEN
228 resid = one / eps
229 ELSE
230 resid = max( resid, ( ( bnorm / anorm ) / xnorm ) / eps )
231 END IF
232 10 CONTINUE
233*
234 RETURN
235*
236* End of CTRT02
237*
real function scasum(n, cx, incx)
SCASUM
Definition scasum.f:72
subroutine caxpy(n, ca, cx, incx, cy, incy)
CAXPY
Definition caxpy.f:88
subroutine ccopy(n, cx, incx, cy, incy)
CCOPY
Definition ccopy.f:81
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function clantr(norm, uplo, diag, m, n, a, lda, work)
CLANTR returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition clantr.f:141
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine ctrmv(uplo, trans, diag, n, a, lda, x, incx)
CTRMV
Definition ctrmv.f:147
Here is the call graph for this function:
Here is the caller graph for this function: