LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zggsvd.f
Go to the documentation of this file.
1*> \brief <b> ZGGSVD computes the singular value decomposition (SVD) for OTHER matrices</b>
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download ZGGSVD + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggsvd.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggsvd.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggsvd.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE ZGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
20* LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
21* RWORK, IWORK, INFO )
22*
23* .. Scalar Arguments ..
24* CHARACTER JOBQ, JOBU, JOBV
25* INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
26* ..
27* .. Array Arguments ..
28* INTEGER IWORK( * )
29* DOUBLE PRECISION ALPHA( * ), BETA( * ), RWORK( * )
30* COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
31* $ U( LDU, * ), V( LDV, * ), WORK( * )
32* ..
33*
34*
35*> \par Purpose:
36* =============
37*>
38*> \verbatim
39*>
40*> This routine is deprecated and has been replaced by routine ZGGSVD3.
41*>
42*> ZGGSVD computes the generalized singular value decomposition (GSVD)
43*> of an M-by-N complex matrix A and P-by-N complex matrix B:
44*>
45*> U**H*A*Q = D1*( 0 R ), V**H*B*Q = D2*( 0 R )
46*>
47*> where U, V and Q are unitary matrices.
48*> Let K+L = the effective numerical rank of the
49*> matrix (A**H,B**H)**H, then R is a (K+L)-by-(K+L) nonsingular upper
50*> triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) "diagonal"
51*> matrices and of the following structures, respectively:
52*>
53*> If M-K-L >= 0,
54*>
55*> K L
56*> D1 = K ( I 0 )
57*> L ( 0 C )
58*> M-K-L ( 0 0 )
59*>
60*> K L
61*> D2 = L ( 0 S )
62*> P-L ( 0 0 )
63*>
64*> N-K-L K L
65*> ( 0 R ) = K ( 0 R11 R12 )
66*> L ( 0 0 R22 )
67*> where
68*>
69*> C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
70*> S = diag( BETA(K+1), ... , BETA(K+L) ),
71*> C**2 + S**2 = I.
72*>
73*> R is stored in A(1:K+L,N-K-L+1:N) on exit.
74*>
75*> If M-K-L < 0,
76*>
77*> K M-K K+L-M
78*> D1 = K ( I 0 0 )
79*> M-K ( 0 C 0 )
80*>
81*> K M-K K+L-M
82*> D2 = M-K ( 0 S 0 )
83*> K+L-M ( 0 0 I )
84*> P-L ( 0 0 0 )
85*>
86*> N-K-L K M-K K+L-M
87*> ( 0 R ) = K ( 0 R11 R12 R13 )
88*> M-K ( 0 0 R22 R23 )
89*> K+L-M ( 0 0 0 R33 )
90*>
91*> where
92*>
93*> C = diag( ALPHA(K+1), ... , ALPHA(M) ),
94*> S = diag( BETA(K+1), ... , BETA(M) ),
95*> C**2 + S**2 = I.
96*>
97*> (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
98*> ( 0 R22 R23 )
99*> in B(M-K+1:L,N+M-K-L+1:N) on exit.
100*>
101*> The routine computes C, S, R, and optionally the unitary
102*> transformation matrices U, V and Q.
103*>
104*> In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
105*> A and B implicitly gives the SVD of A*inv(B):
106*> A*inv(B) = U*(D1*inv(D2))*V**H.
107*> If ( A**H,B**H)**H has orthonormal columns, then the GSVD of A and B is also
108*> equal to the CS decomposition of A and B. Furthermore, the GSVD can
109*> be used to derive the solution of the eigenvalue problem:
110*> A**H*A x = lambda* B**H*B x.
111*> In some literature, the GSVD of A and B is presented in the form
112*> U**H*A*X = ( 0 D1 ), V**H*B*X = ( 0 D2 )
113*> where U and V are orthogonal and X is nonsingular, and D1 and D2 are
114*> ``diagonal''. The former GSVD form can be converted to the latter
115*> form by taking the nonsingular matrix X as
116*>
117*> X = Q*( I 0 )
118*> ( 0 inv(R) )
119*> \endverbatim
120*
121* Arguments:
122* ==========
123*
124*> \param[in] JOBU
125*> \verbatim
126*> JOBU is CHARACTER*1
127*> = 'U': Unitary matrix U is computed;
128*> = 'N': U is not computed.
129*> \endverbatim
130*>
131*> \param[in] JOBV
132*> \verbatim
133*> JOBV is CHARACTER*1
134*> = 'V': Unitary matrix V is computed;
135*> = 'N': V is not computed.
136*> \endverbatim
137*>
138*> \param[in] JOBQ
139*> \verbatim
140*> JOBQ is CHARACTER*1
141*> = 'Q': Unitary matrix Q is computed;
142*> = 'N': Q is not computed.
143*> \endverbatim
144*>
145*> \param[in] M
146*> \verbatim
147*> M is INTEGER
148*> The number of rows of the matrix A. M >= 0.
149*> \endverbatim
150*>
151*> \param[in] N
152*> \verbatim
153*> N is INTEGER
154*> The number of columns of the matrices A and B. N >= 0.
155*> \endverbatim
156*>
157*> \param[in] P
158*> \verbatim
159*> P is INTEGER
160*> The number of rows of the matrix B. P >= 0.
161*> \endverbatim
162*>
163*> \param[out] K
164*> \verbatim
165*> K is INTEGER
166*> \endverbatim
167*>
168*> \param[out] L
169*> \verbatim
170*> L is INTEGER
171*>
172*> On exit, K and L specify the dimension of the subblocks
173*> described in Purpose.
174*> K + L = effective numerical rank of (A**H,B**H)**H.
175*> \endverbatim
176*>
177*> \param[in,out] A
178*> \verbatim
179*> A is COMPLEX*16 array, dimension (LDA,N)
180*> On entry, the M-by-N matrix A.
181*> On exit, A contains the triangular matrix R, or part of R.
182*> See Purpose for details.
183*> \endverbatim
184*>
185*> \param[in] LDA
186*> \verbatim
187*> LDA is INTEGER
188*> The leading dimension of the array A. LDA >= max(1,M).
189*> \endverbatim
190*>
191*> \param[in,out] B
192*> \verbatim
193*> B is COMPLEX*16 array, dimension (LDB,N)
194*> On entry, the P-by-N matrix B.
195*> On exit, B contains part of the triangular matrix R if
196*> M-K-L < 0. See Purpose for details.
197*> \endverbatim
198*>
199*> \param[in] LDB
200*> \verbatim
201*> LDB is INTEGER
202*> The leading dimension of the array B. LDB >= max(1,P).
203*> \endverbatim
204*>
205*> \param[out] ALPHA
206*> \verbatim
207*> ALPHA is DOUBLE PRECISION array, dimension (N)
208*> \endverbatim
209*>
210*> \param[out] BETA
211*> \verbatim
212*> BETA is DOUBLE PRECISION array, dimension (N)
213*>
214*> On exit, ALPHA and BETA contain the generalized singular
215*> value pairs of A and B;
216*> ALPHA(1:K) = 1,
217*> BETA(1:K) = 0,
218*> and if M-K-L >= 0,
219*> ALPHA(K+1:K+L) = C,
220*> BETA(K+1:K+L) = S,
221*> or if M-K-L < 0,
222*> ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
223*> BETA(K+1:M) =S, BETA(M+1:K+L) =1
224*> and
225*> ALPHA(K+L+1:N) = 0
226*> BETA(K+L+1:N) = 0
227*> \endverbatim
228*>
229*> \param[out] U
230*> \verbatim
231*> U is COMPLEX*16 array, dimension (LDU,M)
232*> If JOBU = 'U', U contains the M-by-M unitary matrix U.
233*> If JOBU = 'N', U is not referenced.
234*> \endverbatim
235*>
236*> \param[in] LDU
237*> \verbatim
238*> LDU is INTEGER
239*> The leading dimension of the array U. LDU >= max(1,M) if
240*> JOBU = 'U'; LDU >= 1 otherwise.
241*> \endverbatim
242*>
243*> \param[out] V
244*> \verbatim
245*> V is COMPLEX*16 array, dimension (LDV,P)
246*> If JOBV = 'V', V contains the P-by-P unitary matrix V.
247*> If JOBV = 'N', V is not referenced.
248*> \endverbatim
249*>
250*> \param[in] LDV
251*> \verbatim
252*> LDV is INTEGER
253*> The leading dimension of the array V. LDV >= max(1,P) if
254*> JOBV = 'V'; LDV >= 1 otherwise.
255*> \endverbatim
256*>
257*> \param[out] Q
258*> \verbatim
259*> Q is COMPLEX*16 array, dimension (LDQ,N)
260*> If JOBQ = 'Q', Q contains the N-by-N unitary matrix Q.
261*> If JOBQ = 'N', Q is not referenced.
262*> \endverbatim
263*>
264*> \param[in] LDQ
265*> \verbatim
266*> LDQ is INTEGER
267*> The leading dimension of the array Q. LDQ >= max(1,N) if
268*> JOBQ = 'Q'; LDQ >= 1 otherwise.
269*> \endverbatim
270*>
271*> \param[out] WORK
272*> \verbatim
273*> WORK is COMPLEX*16 array, dimension (max(3*N,M,P)+N)
274*> \endverbatim
275*>
276*> \param[out] RWORK
277*> \verbatim
278*> RWORK is DOUBLE PRECISION array, dimension (2*N)
279*> \endverbatim
280*>
281*> \param[out] IWORK
282*> \verbatim
283*> IWORK is INTEGER array, dimension (N)
284*> On exit, IWORK stores the sorting information. More
285*> precisely, the following loop will sort ALPHA
286*> for I = K+1, min(M,K+L)
287*> swap ALPHA(I) and ALPHA(IWORK(I))
288*> endfor
289*> such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
290*> \endverbatim
291*>
292*> \param[out] INFO
293*> \verbatim
294*> INFO is INTEGER
295*> = 0: successful exit.
296*> < 0: if INFO = -i, the i-th argument had an illegal value.
297*> > 0: if INFO = 1, the Jacobi-type procedure failed to
298*> converge. For further details, see subroutine ZTGSJA.
299*> \endverbatim
300*
301*> \par Internal Parameters:
302* =========================
303*>
304*> \verbatim
305*> TOLA DOUBLE PRECISION
306*> TOLB DOUBLE PRECISION
307*> TOLA and TOLB are the thresholds to determine the effective
308*> rank of (A**H,B**H)**H. Generally, they are set to
309*> TOLA = MAX(M,N)*norm(A)*MAZHEPS,
310*> TOLB = MAX(P,N)*norm(B)*MAZHEPS.
311*> The size of TOLA and TOLB may affect the size of backward
312*> errors of the decomposition.
313*> \endverbatim
314*
315* Authors:
316* ========
317*
318*> \author Univ. of Tennessee
319*> \author Univ. of California Berkeley
320*> \author Univ. of Colorado Denver
321*> \author NAG Ltd.
322*
323*> \ingroup complex16OTHERsing
324*
325*> \par Contributors:
326* ==================
327*>
328*> Ming Gu and Huan Ren, Computer Science Division, University of
329*> California at Berkeley, USA
330*>
331* =====================================================================
332 SUBROUTINE zggsvd( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
333 $ LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
334 $ RWORK, IWORK, INFO )
335*
336* -- LAPACK driver routine --
337* -- LAPACK is a software package provided by Univ. of Tennessee, --
338* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
339*
340* .. Scalar Arguments ..
341 CHARACTER JOBQ, JOBU, JOBV
342 INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
343* ..
344* .. Array Arguments ..
345 INTEGER IWORK( * )
346 DOUBLE PRECISION ALPHA( * ), BETA( * ), RWORK( * )
347 COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
348 $ u( ldu, * ), v( ldv, * ), work( * )
349* ..
350*
351* =====================================================================
352*
353* .. Local Scalars ..
354 LOGICAL WANTQ, WANTU, WANTV
355 INTEGER I, IBND, ISUB, J, NCYCLE
356 DOUBLE PRECISION ANORM, BNORM, SMAX, TEMP, TOLA, TOLB, ULP, UNFL
357* ..
358* .. External Functions ..
359 LOGICAL LSAME
360 DOUBLE PRECISION DLAMCH, ZLANGE
361 EXTERNAL lsame, dlamch, zlange
362* ..
363* .. External Subroutines ..
364 EXTERNAL dcopy, xerbla, zggsvp, ztgsja
365* ..
366* .. Intrinsic Functions ..
367 INTRINSIC max, min
368* ..
369* .. Executable Statements ..
370*
371* Decode and test the input parameters
372*
373 wantu = lsame( jobu, 'U' )
374 wantv = lsame( jobv, 'V' )
375 wantq = lsame( jobq, 'Q' )
376*
377 info = 0
378 IF( .NOT.( wantu .OR. lsame( jobu, 'N' ) ) ) THEN
379 info = -1
380 ELSE IF( .NOT.( wantv .OR. lsame( jobv, 'N' ) ) ) THEN
381 info = -2
382 ELSE IF( .NOT.( wantq .OR. lsame( jobq, 'N' ) ) ) THEN
383 info = -3
384 ELSE IF( m.LT.0 ) THEN
385 info = -4
386 ELSE IF( n.LT.0 ) THEN
387 info = -5
388 ELSE IF( p.LT.0 ) THEN
389 info = -6
390 ELSE IF( lda.LT.max( 1, m ) ) THEN
391 info = -10
392 ELSE IF( ldb.LT.max( 1, p ) ) THEN
393 info = -12
394 ELSE IF( ldu.LT.1 .OR. ( wantu .AND. ldu.LT.m ) ) THEN
395 info = -16
396 ELSE IF( ldv.LT.1 .OR. ( wantv .AND. ldv.LT.p ) ) THEN
397 info = -18
398 ELSE IF( ldq.LT.1 .OR. ( wantq .AND. ldq.LT.n ) ) THEN
399 info = -20
400 END IF
401 IF( info.NE.0 ) THEN
402 CALL xerbla( 'ZGGSVD', -info )
403 RETURN
404 END IF
405*
406* Compute the Frobenius norm of matrices A and B
407*
408 anorm = zlange( '1', m, n, a, lda, rwork )
409 bnorm = zlange( '1', p, n, b, ldb, rwork )
410*
411* Get machine precision and set up threshold for determining
412* the effective numerical rank of the matrices A and B.
413*
414 ulp = dlamch( 'Precision' )
415 unfl = dlamch( 'Safe Minimum' )
416 tola = max( m, n )*max( anorm, unfl )*ulp
417 tolb = max( p, n )*max( bnorm, unfl )*ulp
418*
419 CALL zggsvp( jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola,
420 $ tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, rwork,
421 $ work, work( n+1 ), info )
422*
423* Compute the GSVD of two upper "triangular" matrices
424*
425 CALL ztgsja( jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb,
426 $ tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq,
427 $ work, ncycle, info )
428*
429* Sort the singular values and store the pivot indices in IWORK
430* Copy ALPHA to RWORK, then sort ALPHA in RWORK
431*
432 CALL dcopy( n, alpha, 1, rwork, 1 )
433 ibnd = min( l, m-k )
434 DO 20 i = 1, ibnd
435*
436* Scan for largest ALPHA(K+I)
437*
438 isub = i
439 smax = rwork( k+i )
440 DO 10 j = i + 1, ibnd
441 temp = rwork( k+j )
442 IF( temp.GT.smax ) THEN
443 isub = j
444 smax = temp
445 END IF
446 10 CONTINUE
447 IF( isub.NE.i ) THEN
448 rwork( k+isub ) = rwork( k+i )
449 rwork( k+i ) = smax
450 iwork( k+i ) = k + isub
451 ELSE
452 iwork( k+i ) = k + i
453 END IF
454 20 CONTINUE
455*
456 RETURN
457*
458* End of ZGGSVD
459*
460 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dcopy(n, dx, incx, dy, incy)
DCOPY
Definition dcopy.f:82
subroutine ztgsja(jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)
ZTGSJA
Definition ztgsja.f:377
subroutine zggsvd(jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha, beta, u, ldu, v, ldv, q, ldq, work, rwork, iwork, info)
ZGGSVD computes the singular value decomposition (SVD) for OTHER matrices
Definition zggsvd.f:335
subroutine zggsvp(jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, rwork, tau, work, info)
ZGGSVP
Definition zggsvp.f:263