LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cla_gerfsx_extended()

subroutine cla_gerfsx_extended ( integer  prec_type,
integer  trans_type,
integer  n,
integer  nrhs,
complex, dimension( lda, * )  a,
integer  lda,
complex, dimension( ldaf, * )  af,
integer  ldaf,
integer, dimension( * )  ipiv,
logical  colequ,
real, dimension( * )  c,
complex, dimension( ldb, * )  b,
integer  ldb,
complex, dimension( ldy, * )  y,
integer  ldy,
real, dimension( * )  berr_out,
integer  n_norms,
real, dimension( nrhs, * )  errs_n,
real, dimension( nrhs, * )  errs_c,
complex, dimension( * )  res,
real, dimension( * )  ayb,
complex, dimension( * )  dy,
complex, dimension( * )  y_tail,
real  rcond,
integer  ithresh,
real  rthresh,
real  dz_ub,
logical  ignore_cwise,
integer  info 
)

CLA_GERFSX_EXTENDED

Download CLA_GERFSX_EXTENDED + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 CLA_GERFSX_EXTENDED improves the computed solution to a system of
 linear equations by performing extra-precise iterative refinement
 and provides error bounds and backward error estimates for the solution.
 This subroutine is called by CGERFSX to perform iterative refinement.
 In addition to normwise error bound, the code provides maximum
 componentwise error bound if possible. See comments for ERRS_N
 and ERRS_C for details of the error bounds. Note that this
 subroutine is only responsible for setting the second fields of
 ERRS_N and ERRS_C.
Parameters
[in]PREC_TYPE
          PREC_TYPE is INTEGER
     Specifies the intermediate precision to be used in refinement.
     The value is defined by ILAPREC(P) where P is a CHARACTER and P
          = 'S':  Single
          = 'D':  Double
          = 'I':  Indigenous
          = 'X' or 'E':  Extra
[in]TRANS_TYPE
          TRANS_TYPE is INTEGER
     Specifies the transposition operation on A.
     The value is defined by ILATRANS(T) where T is a CHARACTER and T
          = 'N':  No transpose
          = 'T':  Transpose
          = 'C':  Conjugate transpose
[in]N
          N is INTEGER
     The number of linear equations, i.e., the order of the
     matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
     The number of right-hand-sides, i.e., the number of columns of the
     matrix B.
[in]A
          A is COMPLEX array, dimension (LDA,N)
     On entry, the N-by-N matrix A.
[in]LDA
          LDA is INTEGER
     The leading dimension of the array A.  LDA >= max(1,N).
[in]AF
          AF is COMPLEX array, dimension (LDAF,N)
     The factors L and U from the factorization
     A = P*L*U as computed by CGETRF.
[in]LDAF
          LDAF is INTEGER
     The leading dimension of the array AF.  LDAF >= max(1,N).
[in]IPIV
          IPIV is INTEGER array, dimension (N)
     The pivot indices from the factorization A = P*L*U
     as computed by CGETRF; row i of the matrix was interchanged
     with row IPIV(i).
[in]COLEQU
          COLEQU is LOGICAL
     If .TRUE. then column equilibration was done to A before calling
     this routine. This is needed to compute the solution and error
     bounds correctly.
[in]C
          C is REAL array, dimension (N)
     The column scale factors for A. If COLEQU = .FALSE., C
     is not accessed. If C is input, each element of C should be a power
     of the radix to ensure a reliable solution and error estimates.
     Scaling by powers of the radix does not cause rounding errors unless
     the result underflows or overflows. Rounding errors during scaling
     lead to refining with a matrix that is not equivalent to the
     input matrix, producing error estimates that may not be
     reliable.
[in]B
          B is COMPLEX array, dimension (LDB,NRHS)
     The right-hand-side matrix B.
[in]LDB
          LDB is INTEGER
     The leading dimension of the array B.  LDB >= max(1,N).
[in,out]Y
          Y is COMPLEX array, dimension (LDY,NRHS)
     On entry, the solution matrix X, as computed by CGETRS.
     On exit, the improved solution matrix Y.
[in]LDY
          LDY is INTEGER
     The leading dimension of the array Y.  LDY >= max(1,N).
[out]BERR_OUT
          BERR_OUT is REAL array, dimension (NRHS)
     On exit, BERR_OUT(j) contains the componentwise relative backward
     error for right-hand-side j from the formula
         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
     where abs(Z) is the componentwise absolute value of the matrix
     or vector Z. This is computed by CLA_LIN_BERR.
[in]N_NORMS
          N_NORMS is INTEGER
     Determines which error bounds to return (see ERRS_N
     and ERRS_C).
     If N_NORMS >= 1 return normwise error bounds.
     If N_NORMS >= 2 return componentwise error bounds.
[in,out]ERRS_N
          ERRS_N is REAL array, dimension (NRHS, N_ERR_BNDS)
     For each right-hand side, this array contains information about
     various error bounds and condition numbers corresponding to the
     normwise relative error, which is defined as follows:

     Normwise relative error in the ith solution vector:
             max_j (abs(XTRUE(j,i) - X(j,i)))
            ------------------------------
                  max_j abs(X(j,i))

     The array is indexed by the type of error information as described
     below. There currently are up to three pieces of information
     returned.

     The first index in ERRS_N(i,:) corresponds to the ith
     right-hand side.

     The second index in ERRS_N(:,err) contains the following
     three fields:
     err = 1 "Trust/don't trust" boolean. Trust the answer if the
              reciprocal condition number is less than the threshold
              sqrt(n) * slamch('Epsilon').

     err = 2 "Guaranteed" error bound: The estimated forward error,
              almost certainly within a factor of 10 of the true error
              so long as the next entry is greater than the threshold
              sqrt(n) * slamch('Epsilon'). This error bound should only
              be trusted if the previous boolean is true.

     err = 3  Reciprocal condition number: Estimated normwise
              reciprocal condition number.  Compared with the threshold
              sqrt(n) * slamch('Epsilon') to determine if the error
              estimate is "guaranteed". These reciprocal condition
              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
              appropriately scaled matrix Z.
              Let Z = S*A, where S scales each row by a power of the
              radix so all absolute row sums of Z are approximately 1.

     This subroutine is only responsible for setting the second field
     above.
     See Lapack Working Note 165 for further details and extra
     cautions.
[in,out]ERRS_C
          ERRS_C is REAL array, dimension (NRHS, N_ERR_BNDS)
     For each right-hand side, this array contains information about
     various error bounds and condition numbers corresponding to the
     componentwise relative error, which is defined as follows:

     Componentwise relative error in the ith solution vector:
                    abs(XTRUE(j,i) - X(j,i))
             max_j ----------------------
                         abs(X(j,i))

     The array is indexed by the right-hand side i (on which the
     componentwise relative error depends), and the type of error
     information as described below. There currently are up to three
     pieces of information returned for each right-hand side. If
     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
     ERRS_C is not accessed.  If N_ERR_BNDS < 3, then at most
     the first (:,N_ERR_BNDS) entries are returned.

     The first index in ERRS_C(i,:) corresponds to the ith
     right-hand side.

     The second index in ERRS_C(:,err) contains the following
     three fields:
     err = 1 "Trust/don't trust" boolean. Trust the answer if the
              reciprocal condition number is less than the threshold
              sqrt(n) * slamch('Epsilon').

     err = 2 "Guaranteed" error bound: The estimated forward error,
              almost certainly within a factor of 10 of the true error
              so long as the next entry is greater than the threshold
              sqrt(n) * slamch('Epsilon'). This error bound should only
              be trusted if the previous boolean is true.

     err = 3  Reciprocal condition number: Estimated componentwise
              reciprocal condition number.  Compared with the threshold
              sqrt(n) * slamch('Epsilon') to determine if the error
              estimate is "guaranteed". These reciprocal condition
              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
              appropriately scaled matrix Z.
              Let Z = S*(A*diag(x)), where x is the solution for the
              current right-hand side and S scales each row of
              A*diag(x) by a power of the radix so all absolute row
              sums of Z are approximately 1.

     This subroutine is only responsible for setting the second field
     above.
     See Lapack Working Note 165 for further details and extra
     cautions.
[in]RES
          RES is COMPLEX array, dimension (N)
     Workspace to hold the intermediate residual.
[in]AYB
          AYB is REAL array, dimension (N)
     Workspace.
[in]DY
          DY is COMPLEX array, dimension (N)
     Workspace to hold the intermediate solution.
[in]Y_TAIL
          Y_TAIL is COMPLEX array, dimension (N)
     Workspace to hold the trailing bits of the intermediate solution.
[in]RCOND
          RCOND is REAL
     Reciprocal scaled condition number.  This is an estimate of the
     reciprocal Skeel condition number of the matrix A after
     equilibration (if done).  If this is less than the machine
     precision (in particular, if it is zero), the matrix is singular
     to working precision.  Note that the error may still be small even
     if this number is very small and the matrix appears ill-
     conditioned.
[in]ITHRESH
          ITHRESH is INTEGER
     The maximum number of residual computations allowed for
     refinement. The default is 10. For 'aggressive' set to 100 to
     permit convergence using approximate factorizations or
     factorizations other than LU. If the factorization uses a
     technique other than Gaussian elimination, the guarantees in
     ERRS_N and ERRS_C may no longer be trustworthy.
[in]RTHRESH
          RTHRESH is REAL
     Determines when to stop refinement if the error estimate stops
     decreasing. Refinement will stop when the next solution no longer
     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
     default value is 0.5. For 'aggressive' set to 0.9 to permit
     convergence on extremely ill-conditioned matrices. See LAWN 165
     for more details.
[in]DZ_UB
          DZ_UB is REAL
     Determines when to start considering componentwise convergence.
     Componentwise convergence is only considered after each component
     of the solution Y is stable, which we define as the relative
     change in each component being less than DZ_UB. The default value
     is 0.25, requiring the first bit to be stable. See LAWN 165 for
     more details.
[in]IGNORE_CWISE
          IGNORE_CWISE is LOGICAL
     If .TRUE. then ignore componentwise convergence. Default value
     is .FALSE..
[out]INFO
          INFO is INTEGER
       = 0:  Successful exit.
       < 0:  if INFO = -i, the ith argument to CGETRS had an illegal
             value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 391 of file cla_gerfsx_extended.f.

397*
398* -- LAPACK computational routine --
399* -- LAPACK is a software package provided by Univ. of Tennessee, --
400* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
401*
402* .. Scalar Arguments ..
403 INTEGER INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
404 $ TRANS_TYPE, N_NORMS
405 LOGICAL COLEQU, IGNORE_CWISE
406 INTEGER ITHRESH
407 REAL RTHRESH, DZ_UB
408* ..
409* .. Array Arguments
410 INTEGER IPIV( * )
411 COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
412 $ Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
413 REAL C( * ), AYB( * ), RCOND, BERR_OUT( * ),
414 $ ERRS_N( NRHS, * ), ERRS_C( NRHS, * )
415* ..
416*
417* =====================================================================
418*
419* .. Local Scalars ..
420 CHARACTER TRANS
421 INTEGER CNT, I, J, X_STATE, Z_STATE, Y_PREC_STATE
422 REAL YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
423 $ DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
424 $ DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
425 $ EPS, HUGEVAL, INCR_THRESH
426 LOGICAL INCR_PREC
427 COMPLEX ZDUM
428* ..
429* .. Parameters ..
430 INTEGER UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
431 $ NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
432 $ EXTRA_Y
433 parameter( unstable_state = 0, working_state = 1,
434 $ conv_state = 2,
435 $ noprog_state = 3 )
436 parameter( base_residual = 0, extra_residual = 1,
437 $ extra_y = 2 )
438 INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
439 INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
440 INTEGER CMP_ERR_I, PIV_GROWTH_I
441 parameter( final_nrm_err_i = 1, final_cmp_err_i = 2,
442 $ berr_i = 3 )
443 parameter( rcond_i = 4, nrm_rcond_i = 5, nrm_err_i = 6 )
444 parameter( cmp_rcond_i = 7, cmp_err_i = 8,
445 $ piv_growth_i = 9 )
446 INTEGER LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
447 $ LA_LINRX_CWISE_I
448 parameter( la_linrx_itref_i = 1,
449 $ la_linrx_ithresh_i = 2 )
450 parameter( la_linrx_cwise_i = 3 )
451 INTEGER LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
452 $ LA_LINRX_RCOND_I
453 parameter( la_linrx_trust_i = 1, la_linrx_err_i = 2 )
454 parameter( la_linrx_rcond_i = 3 )
455* ..
456* .. External Subroutines ..
457 EXTERNAL caxpy, ccopy, cgetrs, cgemv, blas_cgemv_x,
458 $ blas_cgemv2_x, cla_geamv, cla_wwaddw, slamch,
460 REAL SLAMCH
461 CHARACTER CHLA_TRANSTYPE
462* ..
463* .. Intrinsic Functions ..
464 INTRINSIC abs, max, min
465* ..
466* .. Statement Functions ..
467 REAL CABS1
468* ..
469* .. Statement Function Definitions ..
470 cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
471* ..
472* .. Executable Statements ..
473*
474 IF ( info.NE.0 ) RETURN
475 trans = chla_transtype(trans_type)
476 eps = slamch( 'Epsilon' )
477 hugeval = slamch( 'Overflow' )
478* Force HUGEVAL to Inf
479 hugeval = hugeval * hugeval
480* Using HUGEVAL may lead to spurious underflows.
481 incr_thresh = real( n ) * eps
482*
483 DO j = 1, nrhs
484 y_prec_state = extra_residual
485 IF ( y_prec_state .EQ. extra_y ) THEN
486 DO i = 1, n
487 y_tail( i ) = 0.0
488 END DO
489 END IF
490
491 dxrat = 0.0
492 dxratmax = 0.0
493 dzrat = 0.0
494 dzratmax = 0.0
495 final_dx_x = hugeval
496 final_dz_z = hugeval
497 prevnormdx = hugeval
498 prev_dz_z = hugeval
499 dz_z = hugeval
500 dx_x = hugeval
501
502 x_state = working_state
503 z_state = unstable_state
504 incr_prec = .false.
505
506 DO cnt = 1, ithresh
507*
508* Compute residual RES = B_s - op(A_s) * Y,
509* op(A) = A, A**T, or A**H depending on TRANS (and type).
510*
511 CALL ccopy( n, b( 1, j ), 1, res, 1 )
512 IF ( y_prec_state .EQ. base_residual ) THEN
513 CALL cgemv( trans, n, n, (-1.0e+0,0.0e+0), a, lda,
514 $ y( 1, j ), 1, (1.0e+0,0.0e+0), res, 1)
515 ELSE IF (y_prec_state .EQ. extra_residual) THEN
516 CALL blas_cgemv_x( trans_type, n, n, (-1.0e+0,0.0e+0), a,
517 $ lda, y( 1, j ), 1, (1.0e+0,0.0e+0),
518 $ res, 1, prec_type )
519 ELSE
520 CALL blas_cgemv2_x( trans_type, n, n, (-1.0e+0,0.0e+0),
521 $ a, lda, y(1, j), y_tail, 1, (1.0e+0,0.0e+0), res, 1,
522 $ prec_type)
523 END IF
524
525! XXX: RES is no longer needed.
526 CALL ccopy( n, res, 1, dy, 1 )
527 CALL cgetrs( trans, n, 1, af, ldaf, ipiv, dy, n, info )
528*
529* Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
530*
531 normx = 0.0e+0
532 normy = 0.0e+0
533 normdx = 0.0e+0
534 dz_z = 0.0e+0
535 ymin = hugeval
536*
537 DO i = 1, n
538 yk = cabs1( y( i, j ) )
539 dyk = cabs1( dy( i ) )
540
541 IF ( yk .NE. 0.0e+0 ) THEN
542 dz_z = max( dz_z, dyk / yk )
543 ELSE IF ( dyk .NE. 0.0 ) THEN
544 dz_z = hugeval
545 END IF
546
547 ymin = min( ymin, yk )
548
549 normy = max( normy, yk )
550
551 IF ( colequ ) THEN
552 normx = max( normx, yk * c( i ) )
553 normdx = max( normdx, dyk * c( i ) )
554 ELSE
555 normx = normy
556 normdx = max(normdx, dyk)
557 END IF
558 END DO
559
560 IF ( normx .NE. 0.0 ) THEN
561 dx_x = normdx / normx
562 ELSE IF ( normdx .EQ. 0.0 ) THEN
563 dx_x = 0.0
564 ELSE
565 dx_x = hugeval
566 END IF
567
568 dxrat = normdx / prevnormdx
569 dzrat = dz_z / prev_dz_z
570*
571* Check termination criteria
572*
573 IF (.NOT.ignore_cwise
574 $ .AND. ymin*rcond .LT. incr_thresh*normy
575 $ .AND. y_prec_state .LT. extra_y )
576 $ incr_prec = .true.
577
578 IF ( x_state .EQ. noprog_state .AND. dxrat .LE. rthresh )
579 $ x_state = working_state
580 IF ( x_state .EQ. working_state ) THEN
581 IF (dx_x .LE. eps) THEN
582 x_state = conv_state
583 ELSE IF ( dxrat .GT. rthresh ) THEN
584 IF ( y_prec_state .NE. extra_y ) THEN
585 incr_prec = .true.
586 ELSE
587 x_state = noprog_state
588 END IF
589 ELSE
590 IF ( dxrat .GT. dxratmax ) dxratmax = dxrat
591 END IF
592 IF ( x_state .GT. working_state ) final_dx_x = dx_x
593 END IF
594
595 IF ( z_state .EQ. unstable_state .AND. dz_z .LE. dz_ub )
596 $ z_state = working_state
597 IF ( z_state .EQ. noprog_state .AND. dzrat .LE. rthresh )
598 $ z_state = working_state
599 IF ( z_state .EQ. working_state ) THEN
600 IF ( dz_z .LE. eps ) THEN
601 z_state = conv_state
602 ELSE IF ( dz_z .GT. dz_ub ) THEN
603 z_state = unstable_state
604 dzratmax = 0.0
605 final_dz_z = hugeval
606 ELSE IF ( dzrat .GT. rthresh ) THEN
607 IF ( y_prec_state .NE. extra_y ) THEN
608 incr_prec = .true.
609 ELSE
610 z_state = noprog_state
611 END IF
612 ELSE
613 IF ( dzrat .GT. dzratmax ) dzratmax = dzrat
614 END IF
615 IF ( z_state .GT. working_state ) final_dz_z = dz_z
616 END IF
617*
618* Exit if both normwise and componentwise stopped working,
619* but if componentwise is unstable, let it go at least two
620* iterations.
621*
622 IF ( x_state.NE.working_state ) THEN
623 IF ( ignore_cwise ) GOTO 666
624 IF ( z_state.EQ.noprog_state .OR. z_state.EQ.conv_state )
625 $ GOTO 666
626 IF ( z_state.EQ.unstable_state .AND. cnt.GT.1 ) GOTO 666
627 END IF
628
629 IF ( incr_prec ) THEN
630 incr_prec = .false.
631 y_prec_state = y_prec_state + 1
632 DO i = 1, n
633 y_tail( i ) = 0.0
634 END DO
635 END IF
636
637 prevnormdx = normdx
638 prev_dz_z = dz_z
639*
640* Update solution.
641*
642 IF ( y_prec_state .LT. extra_y ) THEN
643 CALL caxpy( n, (1.0e+0,0.0e+0), dy, 1, y(1,j), 1 )
644 ELSE
645 CALL cla_wwaddw( n, y( 1, j ), y_tail, dy )
646 END IF
647
648 END DO
649* Target of "IF (Z_STOP .AND. X_STOP)". Sun's f77 won't EXIT.
650 666 CONTINUE
651*
652* Set final_* when cnt hits ithresh
653*
654 IF ( x_state .EQ. working_state ) final_dx_x = dx_x
655 IF ( z_state .EQ. working_state ) final_dz_z = dz_z
656*
657* Compute error bounds
658*
659 IF (n_norms .GE. 1) THEN
660 errs_n( j, la_linrx_err_i ) = final_dx_x / (1 - dxratmax)
661
662 END IF
663 IF ( n_norms .GE. 2 ) THEN
664 errs_c( j, la_linrx_err_i ) = final_dz_z / (1 - dzratmax)
665 END IF
666*
667* Compute componentwise relative backward error from formula
668* max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
669* where abs(Z) is the componentwise absolute value of the matrix
670* or vector Z.
671*
672* Compute residual RES = B_s - op(A_s) * Y,
673* op(A) = A, A**T, or A**H depending on TRANS (and type).
674*
675 CALL ccopy( n, b( 1, j ), 1, res, 1 )
676 CALL cgemv( trans, n, n, (-1.0e+0,0.0e+0), a, lda, y(1,j), 1,
677 $ (1.0e+0,0.0e+0), res, 1 )
678
679 DO i = 1, n
680 ayb( i ) = cabs1( b( i, j ) )
681 END DO
682*
683* Compute abs(op(A_s))*abs(Y) + abs(B_s).
684*
685 CALL cla_geamv ( trans_type, n, n, 1.0e+0,
686 $ a, lda, y(1, j), 1, 1.0e+0, ayb, 1 )
687
688 CALL cla_lin_berr ( n, n, 1, res, ayb, berr_out( j ) )
689*
690* End of loop for each RHS.
691*
692 END DO
693*
694 RETURN
695*
696* End of CLA_GERFSX_EXTENDED
697*
subroutine caxpy(n, ca, cx, incx, cy, incy)
CAXPY
Definition caxpy.f:88
subroutine ccopy(n, cx, incx, cy, incy)
CCOPY
Definition ccopy.f:81
subroutine cgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
CGEMV
Definition cgemv.f:160
subroutine cgetrs(trans, n, nrhs, a, lda, ipiv, b, ldb, info)
CGETRS
Definition cgetrs.f:121
subroutine cla_geamv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
CLA_GEAMV computes a matrix-vector product using a general matrix to calculate error bounds.
Definition cla_geamv.f:177
subroutine cla_lin_berr(n, nz, nrhs, res, ayb, berr)
CLA_LIN_BERR computes a component-wise relative backward error.
character *1 function chla_transtype(trans)
CHLA_TRANSTYPE
subroutine cla_wwaddw(n, x, y, w)
CLA_WWADDW adds a vector into a doubled-single vector.
Definition cla_wwaddw.f:81
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
Here is the call graph for this function:
Here is the caller graph for this function: