LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ sorgbr()

subroutine sorgbr ( character vect,
integer m,
integer n,
integer k,
real, dimension( lda, * ) a,
integer lda,
real, dimension( * ) tau,
real, dimension( * ) work,
integer lwork,
integer info )

SORGBR

Download SORGBR + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SORGBR generates one of the real orthogonal matrices Q or P**T
!> determined by SGEBRD when reducing a real matrix A to bidiagonal
!> form: A = Q * B * P**T.  Q and P**T are defined as products of
!> elementary reflectors H(i) or G(i) respectively.
!>
!> If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
!> is of order M:
!> if m >= k, Q = H(1) H(2) . . . H(k) and SORGBR returns the first n
!> columns of Q, where m >= n >= k;
!> if m < k, Q = H(1) H(2) . . . H(m-1) and SORGBR returns Q as an
!> M-by-M matrix.
!>
!> If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T
!> is of order N:
!> if k < n, P**T = G(k) . . . G(2) G(1) and SORGBR returns the first m
!> rows of P**T, where n >= m >= k;
!> if k >= n, P**T = G(n-1) . . . G(2) G(1) and SORGBR returns P**T as
!> an N-by-N matrix.
!> 
Parameters
[in]VECT
!>          VECT is CHARACTER*1
!>          Specifies whether the matrix Q or the matrix P**T is
!>          required, as defined in the transformation applied by SGEBRD:
!>          = 'Q':  generate Q;
!>          = 'P':  generate P**T.
!> 
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix Q or P**T to be returned.
!>          M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix Q or P**T to be returned.
!>          N >= 0.
!>          If VECT = 'Q', M >= N >= min(M,K);
!>          if VECT = 'P', N >= M >= min(N,K).
!> 
[in]K
!>          K is INTEGER
!>          If VECT = 'Q', the number of columns in the original M-by-K
!>          matrix reduced by SGEBRD.
!>          If VECT = 'P', the number of rows in the original K-by-N
!>          matrix reduced by SGEBRD.
!>          K >= 0.
!> 
[in,out]A
!>          A is REAL array, dimension (LDA,N)
!>          On entry, the vectors which define the elementary reflectors,
!>          as returned by SGEBRD.
!>          On exit, the M-by-N matrix Q or P**T.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A. LDA >= max(1,M).
!> 
[in]TAU
!>          TAU is REAL array, dimension
!>                                (min(M,K)) if VECT = 'Q'
!>                                (min(N,K)) if VECT = 'P'
!>          TAU(i) must contain the scalar factor of the elementary
!>          reflector H(i) or G(i), which determines Q or P**T, as
!>          returned by SGEBRD in its array argument TAUQ or TAUP.
!> 
[out]WORK
!>          WORK is REAL array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The dimension of the array WORK. LWORK >= max(1,min(M,N)).
!>          For optimum performance LWORK >= min(M,N)*NB, where NB
!>          is the optimal blocksize.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 154 of file sorgbr.f.

156*
157* -- LAPACK computational routine --
158* -- LAPACK is a software package provided by Univ. of Tennessee, --
159* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
160*
161* .. Scalar Arguments ..
162 CHARACTER VECT
163 INTEGER INFO, K, LDA, LWORK, M, N
164* ..
165* .. Array Arguments ..
166 REAL A( LDA, * ), TAU( * ), WORK( * )
167* ..
168*
169* =====================================================================
170*
171* .. Parameters ..
172 REAL ZERO, ONE
173 parameter( zero = 0.0e+0, one = 1.0e+0 )
174* ..
175* .. Local Scalars ..
176 LOGICAL LQUERY, WANTQ
177 INTEGER I, IINFO, J, LWKOPT, MN
178* ..
179* .. External Functions ..
180 LOGICAL LSAME
181 REAL SROUNDUP_LWORK
182 EXTERNAL lsame, sroundup_lwork
183* ..
184* .. External Subroutines ..
185 EXTERNAL sorglq, sorgqr, xerbla
186* ..
187* .. Intrinsic Functions ..
188 INTRINSIC max, min
189* ..
190* .. Executable Statements ..
191*
192* Test the input arguments
193*
194 info = 0
195 wantq = lsame( vect, 'Q' )
196 mn = min( m, n )
197 lquery = ( lwork.EQ.-1 )
198 IF( .NOT.wantq .AND. .NOT.lsame( vect, 'P' ) ) THEN
199 info = -1
200 ELSE IF( m.LT.0 ) THEN
201 info = -2
202 ELSE IF( n.LT.0 .OR. ( wantq .AND. ( n.GT.m .OR. n.LT.min( m,
203 $ k ) ) ) .OR. ( .NOT.wantq .AND. ( m.GT.n .OR. m.LT.
204 $ min( n, k ) ) ) ) THEN
205 info = -3
206 ELSE IF( k.LT.0 ) THEN
207 info = -4
208 ELSE IF( lda.LT.max( 1, m ) ) THEN
209 info = -6
210 ELSE IF( lwork.LT.max( 1, mn ) .AND. .NOT.lquery ) THEN
211 info = -9
212 END IF
213*
214 IF( info.EQ.0 ) THEN
215 work( 1 ) = 1
216 IF( wantq ) THEN
217 IF( m.GE.k ) THEN
218 CALL sorgqr( m, n, k, a, lda, tau, work, -1, iinfo )
219 ELSE
220 IF( m.GT.1 ) THEN
221 CALL sorgqr( m-1, m-1, m-1, a, lda, tau, work, -1,
222 $ iinfo )
223 END IF
224 END IF
225 ELSE
226 IF( k.LT.n ) THEN
227 CALL sorglq( m, n, k, a, lda, tau, work, -1, iinfo )
228 ELSE
229 IF( n.GT.1 ) THEN
230 CALL sorglq( n-1, n-1, n-1, a, lda, tau, work, -1,
231 $ iinfo )
232 END IF
233 END IF
234 END IF
235 lwkopt = int( work( 1 ) )
236 lwkopt = max(lwkopt, mn)
237 END IF
238*
239 IF( info.NE.0 ) THEN
240 CALL xerbla( 'SORGBR', -info )
241 RETURN
242 ELSE IF( lquery ) THEN
243 work( 1 ) = sroundup_lwork(lwkopt)
244 RETURN
245 END IF
246*
247* Quick return if possible
248*
249 IF( m.EQ.0 .OR. n.EQ.0 ) THEN
250 work( 1 ) = 1
251 RETURN
252 END IF
253*
254 IF( wantq ) THEN
255*
256* Form Q, determined by a call to SGEBRD to reduce an m-by-k
257* matrix
258*
259 IF( m.GE.k ) THEN
260*
261* If m >= k, assume m >= n >= k
262*
263 CALL sorgqr( m, n, k, a, lda, tau, work, lwork, iinfo )
264*
265 ELSE
266*
267* If m < k, assume m = n
268*
269* Shift the vectors which define the elementary reflectors one
270* column to the right, and set the first row and column of Q
271* to those of the unit matrix
272*
273 DO 20 j = m, 2, -1
274 a( 1, j ) = zero
275 DO 10 i = j + 1, m
276 a( i, j ) = a( i, j-1 )
277 10 CONTINUE
278 20 CONTINUE
279 a( 1, 1 ) = one
280 DO 30 i = 2, m
281 a( i, 1 ) = zero
282 30 CONTINUE
283 IF( m.GT.1 ) THEN
284*
285* Form Q(2:m,2:m)
286*
287 CALL sorgqr( m-1, m-1, m-1, a( 2, 2 ), lda, tau, work,
288 $ lwork, iinfo )
289 END IF
290 END IF
291 ELSE
292*
293* Form P**T, determined by a call to SGEBRD to reduce a k-by-n
294* matrix
295*
296 IF( k.LT.n ) THEN
297*
298* If k < n, assume k <= m <= n
299*
300 CALL sorglq( m, n, k, a, lda, tau, work, lwork, iinfo )
301*
302 ELSE
303*
304* If k >= n, assume m = n
305*
306* Shift the vectors which define the elementary reflectors one
307* row downward, and set the first row and column of P**T to
308* those of the unit matrix
309*
310 a( 1, 1 ) = one
311 DO 40 i = 2, n
312 a( i, 1 ) = zero
313 40 CONTINUE
314 DO 60 j = 2, n
315 DO 50 i = j - 1, 2, -1
316 a( i, j ) = a( i-1, j )
317 50 CONTINUE
318 a( 1, j ) = zero
319 60 CONTINUE
320 IF( n.GT.1 ) THEN
321*
322* Form P**T(2:n,2:n)
323*
324 CALL sorglq( n-1, n-1, n-1, a( 2, 2 ), lda, tau, work,
325 $ lwork, iinfo )
326 END IF
327 END IF
328 END IF
329 work( 1 ) = sroundup_lwork(lwkopt)
330 RETURN
331*
332* End of SORGBR
333*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
subroutine sorglq(m, n, k, a, lda, tau, work, lwork, info)
SORGLQ
Definition sorglq.f:125
subroutine sorgqr(m, n, k, a, lda, tau, work, lwork, info)
SORGQR
Definition sorgqr.f:126
Here is the call graph for this function:
Here is the caller graph for this function: