LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cla_syrcond_x.f
Go to the documentation of this file.
1*> \brief \b CLA_SYRCOND_X computes the infinity norm condition number of op(A)*diag(x) for symmetric indefinite matrices.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download CLA_SYRCOND_X + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_syrcond_x.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_syrcond_x.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_syrcond_x.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* REAL FUNCTION CLA_SYRCOND_X( UPLO, N, A, LDA, AF, LDAF, IPIV, X,
20* INFO, WORK, RWORK )
21*
22* .. Scalar Arguments ..
23* CHARACTER UPLO
24* INTEGER N, LDA, LDAF, INFO
25* ..
26* .. Array Arguments ..
27* INTEGER IPIV( * )
28* COMPLEX A( LDA, * ), AF( LDAF, * ), WORK( * ), X( * )
29* REAL RWORK( * )
30* ..
31*
32*
33*> \par Purpose:
34* =============
35*>
36*> \verbatim
37*>
38*> CLA_SYRCOND_X Computes the infinity norm condition number of
39*> op(A) * diag(X) where X is a COMPLEX vector.
40*> \endverbatim
41*
42* Arguments:
43* ==========
44*
45*> \param[in] UPLO
46*> \verbatim
47*> UPLO is CHARACTER*1
48*> = 'U': Upper triangle of A is stored;
49*> = 'L': Lower triangle of A is stored.
50*> \endverbatim
51*>
52*> \param[in] N
53*> \verbatim
54*> N is INTEGER
55*> The number of linear equations, i.e., the order of the
56*> matrix A. N >= 0.
57*> \endverbatim
58*>
59*> \param[in] A
60*> \verbatim
61*> A is COMPLEX array, dimension (LDA,N)
62*> On entry, the N-by-N matrix A.
63*> \endverbatim
64*>
65*> \param[in] LDA
66*> \verbatim
67*> LDA is INTEGER
68*> The leading dimension of the array A. LDA >= max(1,N).
69*> \endverbatim
70*>
71*> \param[in] AF
72*> \verbatim
73*> AF is COMPLEX array, dimension (LDAF,N)
74*> The block diagonal matrix D and the multipliers used to
75*> obtain the factor U or L as computed by CSYTRF.
76*> \endverbatim
77*>
78*> \param[in] LDAF
79*> \verbatim
80*> LDAF is INTEGER
81*> The leading dimension of the array AF. LDAF >= max(1,N).
82*> \endverbatim
83*>
84*> \param[in] IPIV
85*> \verbatim
86*> IPIV is INTEGER array, dimension (N)
87*> Details of the interchanges and the block structure of D
88*> as determined by CSYTRF.
89*> \endverbatim
90*>
91*> \param[in] X
92*> \verbatim
93*> X is COMPLEX array, dimension (N)
94*> The vector X in the formula op(A) * diag(X).
95*> \endverbatim
96*>
97*> \param[out] INFO
98*> \verbatim
99*> INFO is INTEGER
100*> = 0: Successful exit.
101*> i > 0: The ith argument is invalid.
102*> \endverbatim
103*>
104*> \param[out] WORK
105*> \verbatim
106*> WORK is COMPLEX array, dimension (2*N).
107*> Workspace.
108*> \endverbatim
109*>
110*> \param[out] RWORK
111*> \verbatim
112*> RWORK is REAL array, dimension (N).
113*> Workspace.
114*> \endverbatim
115*
116* Authors:
117* ========
118*
119*> \author Univ. of Tennessee
120*> \author Univ. of California Berkeley
121*> \author Univ. of Colorado Denver
122*> \author NAG Ltd.
123*
124*> \ingroup la_hercond
125*
126* =====================================================================
127 REAL function cla_syrcond_x( uplo, n, a, lda, af, ldaf, ipiv,
128 $ x,
129 $ info, work, rwork )
130*
131* -- LAPACK computational routine --
132* -- LAPACK is a software package provided by Univ. of Tennessee, --
133* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
134*
135* .. Scalar Arguments ..
136 CHARACTER uplo
137 INTEGER n, lda, ldaf, info
138* ..
139* .. Array Arguments ..
140 INTEGER ipiv( * )
141 COMPLEX a( lda, * ), af( ldaf, * ), work( * ), x( * )
142 REAL rwork( * )
143* ..
144*
145* =====================================================================
146*
147* .. Local Scalars ..
148 INTEGER kase
149 REAL ainvnm, anorm, tmp
150 INTEGER i, j
151 LOGICAL up, upper
152 COMPLEX zdum
153* ..
154* .. Local Arrays ..
155 INTEGER isave( 3 )
156* ..
157* .. External Functions ..
158 LOGICAL lsame
159 EXTERNAL lsame
160* ..
161* .. External Subroutines ..
162 EXTERNAL clacn2, csytrs, xerbla
163* ..
164* .. Intrinsic Functions ..
165 INTRINSIC abs, max
166* ..
167* .. Statement Functions ..
168 REAL cabs1
169* ..
170* .. Statement Function Definitions ..
171 cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
172* ..
173* .. Executable Statements ..
174*
175 cla_syrcond_x = 0.0e+0
176*
177 info = 0
178 upper = lsame( uplo, 'U' )
179 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
180 info = -1
181 ELSE IF ( n.LT.0 ) THEN
182 info = -2
183 ELSE IF( lda.LT.max( 1, n ) ) THEN
184 info = -4
185 ELSE IF( ldaf.LT.max( 1, n ) ) THEN
186 info = -6
187 END IF
188 IF( info.NE.0 ) THEN
189 CALL xerbla( 'CLA_SYRCOND_X', -info )
190 RETURN
191 END IF
192 up = .false.
193 IF ( lsame( uplo, 'U' ) ) up = .true.
194*
195* Compute norm of op(A)*op2(C).
196*
197 anorm = 0.0
198 IF ( up ) THEN
199 DO i = 1, n
200 tmp = 0.0e+0
201 DO j = 1, i
202 tmp = tmp + cabs1( a( j, i ) * x( j ) )
203 END DO
204 DO j = i+1, n
205 tmp = tmp + cabs1( a( i, j ) * x( j ) )
206 END DO
207 rwork( i ) = tmp
208 anorm = max( anorm, tmp )
209 END DO
210 ELSE
211 DO i = 1, n
212 tmp = 0.0e+0
213 DO j = 1, i
214 tmp = tmp + cabs1( a( i, j ) * x( j ) )
215 END DO
216 DO j = i+1, n
217 tmp = tmp + cabs1( a( j, i ) * x( j ) )
218 END DO
219 rwork( i ) = tmp
220 anorm = max( anorm, tmp )
221 END DO
222 END IF
223*
224* Quick return if possible.
225*
226 IF( n.EQ.0 ) THEN
227 cla_syrcond_x = 1.0e+0
228 RETURN
229 ELSE IF( anorm .EQ. 0.0e+0 ) THEN
230 RETURN
231 END IF
232*
233* Estimate the norm of inv(op(A)).
234*
235 ainvnm = 0.0e+0
236*
237 kase = 0
238 10 CONTINUE
239 CALL clacn2( n, work( n+1 ), work, ainvnm, kase, isave )
240 IF( kase.NE.0 ) THEN
241 IF( kase.EQ.2 ) THEN
242*
243* Multiply by R.
244*
245 DO i = 1, n
246 work( i ) = work( i ) * rwork( i )
247 END DO
248*
249 IF ( up ) THEN
250 CALL csytrs( 'U', n, 1, af, ldaf, ipiv,
251 $ work, n, info )
252 ELSE
253 CALL csytrs( 'L', n, 1, af, ldaf, ipiv,
254 $ work, n, info )
255 ENDIF
256*
257* Multiply by inv(X).
258*
259 DO i = 1, n
260 work( i ) = work( i ) / x( i )
261 END DO
262 ELSE
263*
264* Multiply by inv(X**T).
265*
266 DO i = 1, n
267 work( i ) = work( i ) / x( i )
268 END DO
269*
270 IF ( up ) THEN
271 CALL csytrs( 'U', n, 1, af, ldaf, ipiv,
272 $ work, n, info )
273 ELSE
274 CALL csytrs( 'L', n, 1, af, ldaf, ipiv,
275 $ work, n, info )
276 END IF
277*
278* Multiply by R.
279*
280 DO i = 1, n
281 work( i ) = work( i ) * rwork( i )
282 END DO
283 END IF
284 GO TO 10
285 END IF
286*
287* Compute the estimate of the reciprocal condition number.
288*
289 IF( ainvnm .NE. 0.0e+0 )
290 $ cla_syrcond_x = 1.0e+0 / ainvnm
291*
292 RETURN
293*
294* End of CLA_SYRCOND_X
295*
296 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine csytrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
CSYTRS
Definition csytrs.f:118
real function cla_syrcond_x(uplo, n, a, lda, af, ldaf, ipiv, x, info, work, rwork)
CLA_SYRCOND_X computes the infinity norm condition number of op(A)*diag(x) for symmetric indefinite m...
subroutine clacn2(n, v, x, est, kase, isave)
CLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition clacn2.f:131
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48