LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cunbdb2()

subroutine cunbdb2 ( integer m,
integer p,
integer q,
complex, dimension(ldx11,*) x11,
integer ldx11,
complex, dimension(ldx21,*) x21,
integer ldx21,
real, dimension(*) theta,
real, dimension(*) phi,
complex, dimension(*) taup1,
complex, dimension(*) taup2,
complex, dimension(*) tauq1,
complex, dimension(*) work,
integer lwork,
integer info )

CUNBDB2

Download CUNBDB2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CUNBDB2 simultaneously bidiagonalizes the blocks of a tall and skinny
!> matrix X with orthonormal columns:
!>
!>                            [ B11 ]
!>      [ X11 ]   [ P1 |    ] [  0  ]
!>      [-----] = [---------] [-----] Q1**T .
!>      [ X21 ]   [    | P2 ] [ B21 ]
!>                            [  0  ]
!>
!> X11 is P-by-Q, and X21 is (M-P)-by-Q. P must be no larger than M-P,
!> Q, or M-Q. Routines CUNBDB1, CUNBDB3, and CUNBDB4 handle cases in
!> which P is not the minimum dimension.
!>
!> The unitary matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P),
!> and (M-Q)-by-(M-Q), respectively. They are represented implicitly by
!> Householder vectors.
!>
!> B11 and B12 are P-by-P bidiagonal matrices represented implicitly by
!> angles THETA, PHI.
!>
!>
Parameters
[in]M
!>          M is INTEGER
!>           The number of rows X11 plus the number of rows in X21.
!> 
[in]P
!>          P is INTEGER
!>           The number of rows in X11. 0 <= P <= min(M-P,Q,M-Q).
!> 
[in]Q
!>          Q is INTEGER
!>           The number of columns in X11 and X21. 0 <= Q <= M.
!> 
[in,out]X11
!>          X11 is COMPLEX array, dimension (LDX11,Q)
!>           On entry, the top block of the matrix X to be reduced. On
!>           exit, the columns of tril(X11) specify reflectors for P1 and
!>           the rows of triu(X11,1) specify reflectors for Q1.
!> 
[in]LDX11
!>          LDX11 is INTEGER
!>           The leading dimension of X11. LDX11 >= P.
!> 
[in,out]X21
!>          X21 is COMPLEX array, dimension (LDX21,Q)
!>           On entry, the bottom block of the matrix X to be reduced. On
!>           exit, the columns of tril(X21) specify reflectors for P2.
!> 
[in]LDX21
!>          LDX21 is INTEGER
!>           The leading dimension of X21. LDX21 >= M-P.
!> 
[out]THETA
!>          THETA is REAL array, dimension (Q)
!>           The entries of the bidiagonal blocks B11, B21 are defined by
!>           THETA and PHI. See Further Details.
!> 
[out]PHI
!>          PHI is REAL array, dimension (Q-1)
!>           The entries of the bidiagonal blocks B11, B21 are defined by
!>           THETA and PHI. See Further Details.
!> 
[out]TAUP1
!>          TAUP1 is COMPLEX array, dimension (P-1)
!>           The scalar factors of the elementary reflectors that define
!>           P1.
!> 
[out]TAUP2
!>          TAUP2 is COMPLEX array, dimension (Q)
!>           The scalar factors of the elementary reflectors that define
!>           P2.
!> 
[out]TAUQ1
!>          TAUQ1 is COMPLEX array, dimension (Q)
!>           The scalar factors of the elementary reflectors that define
!>           Q1.
!> 
[out]WORK
!>          WORK is COMPLEX array, dimension (LWORK)
!> 
[in]LWORK
!>          LWORK is INTEGER
!>           The dimension of the array WORK. LWORK >= M-Q.
!>
!>           If LWORK = -1, then a workspace query is assumed; the routine
!>           only calculates the optimal size of the WORK array, returns
!>           this value as the first entry of the WORK array, and no error
!>           message related to LWORK is issued by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>           = 0:  successful exit.
!>           < 0:  if INFO = -i, the i-th argument had an illegal value.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  The upper-bidiagonal blocks B11, B21 are represented implicitly by
!>  angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry
!>  in each bidiagonal band is a product of a sine or cosine of a THETA
!>  with a sine or cosine of a PHI. See [1] or CUNCSD for details.
!>
!>  P1, P2, and Q1 are represented as products of elementary reflectors.
!>  See CUNCSD2BY1 for details on generating P1, P2, and Q1 using CUNGQR
!>  and CUNGLQ.
!> 
References:
[1] Brian D. Sutton. Computing the complete CS decomposition. Numer. Algorithms, 50(1):33-65, 2009.

Definition at line 198 of file cunbdb2.f.

201*
202* -- LAPACK computational routine --
203* -- LAPACK is a software package provided by Univ. of Tennessee, --
204* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
205*
206* .. Scalar Arguments ..
207 INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21
208* ..
209* .. Array Arguments ..
210 REAL PHI(*), THETA(*)
211 COMPLEX TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
212 $ X11(LDX11,*), X21(LDX21,*)
213* ..
214*
215* ====================================================================
216*
217* .. Parameters ..
218 COMPLEX NEGONE
219 parameter( negone = (-1.0e0,0.0e0) )
220* ..
221* .. Local Scalars ..
222 REAL C, S
223 INTEGER CHILDINFO, I, ILARF, IORBDB5, LLARF, LORBDB5,
224 $ LWORKMIN, LWORKOPT
225 LOGICAL LQUERY
226* ..
227* .. External Subroutines ..
228 EXTERNAL clarf1f, clarfgp, cunbdb5, csrot, cscal,
229 $ clacgv,
230 $ xerbla
231* ..
232* .. External Functions ..
233 REAL SCNRM2, SROUNDUP_LWORK
234 EXTERNAL scnrm2, sroundup_lwork
235* ..
236* .. Intrinsic Function ..
237 INTRINSIC atan2, cos, max, sin, sqrt
238* ..
239* .. Executable Statements ..
240*
241* Test input arguments
242*
243 info = 0
244 lquery = lwork .EQ. -1
245*
246 IF( m .LT. 0 ) THEN
247 info = -1
248 ELSE IF( p .LT. 0 .OR. p .GT. m-p ) THEN
249 info = -2
250 ELSE IF( q .LT. 0 .OR. q .LT. p .OR. m-q .LT. p ) THEN
251 info = -3
252 ELSE IF( ldx11 .LT. max( 1, p ) ) THEN
253 info = -5
254 ELSE IF( ldx21 .LT. max( 1, m-p ) ) THEN
255 info = -7
256 END IF
257*
258* Compute workspace
259*
260 IF( info .EQ. 0 ) THEN
261 ilarf = 2
262 llarf = max( p-1, m-p, q-1 )
263 iorbdb5 = 2
264 lorbdb5 = q-1
265 lworkopt = max( ilarf+llarf-1, iorbdb5+lorbdb5-1 )
266 lworkmin = lworkopt
267 work(1) = sroundup_lwork(lworkopt)
268 IF( lwork .LT. lworkmin .AND. .NOT.lquery ) THEN
269 info = -14
270 END IF
271 END IF
272 IF( info .NE. 0 ) THEN
273 CALL xerbla( 'CUNBDB2', -info )
274 RETURN
275 ELSE IF( lquery ) THEN
276 RETURN
277 END IF
278*
279* Reduce rows 1, ..., P of X11 and X21
280*
281 DO i = 1, p
282*
283 IF( i .GT. 1 ) THEN
284 CALL csrot( q-i+1, x11(i,i), ldx11, x21(i-1,i), ldx21, c,
285 $ s )
286 END IF
287 CALL clacgv( q-i+1, x11(i,i), ldx11 )
288 CALL clarfgp( q-i+1, x11(i,i), x11(i,i+1), ldx11, tauq1(i) )
289 c = real( x11(i,i) )
290 CALL clarf1f( 'R', p-i, q-i+1, x11(i,i), ldx11, tauq1(i),
291 $ x11(i+1,i), ldx11, work(ilarf) )
292 CALL clarf1f( 'R', m-p-i+1, q-i+1, x11(i,i), ldx11,
293 $ tauq1(i), x21(i,i), ldx21, work(ilarf) )
294 CALL clacgv( q-i+1, x11(i,i), ldx11 )
295 s = sqrt( scnrm2( p-i, x11(i+1,i), 1 )**2
296 $ + scnrm2( m-p-i+1, x21(i,i), 1 )**2 )
297 theta(i) = atan2( s, c )
298*
299 CALL cunbdb5( p-i, m-p-i+1, q-i, x11(i+1,i), 1, x21(i,i), 1,
300 $ x11(i+1,i+1), ldx11, x21(i,i+1), ldx21,
301 $ work(iorbdb5), lorbdb5, childinfo )
302 CALL cscal( p-i, negone, x11(i+1,i), 1 )
303 CALL clarfgp( m-p-i+1, x21(i,i), x21(i+1,i), 1, taup2(i) )
304 IF( i .LT. p ) THEN
305 CALL clarfgp( p-i, x11(i+1,i), x11(i+2,i), 1, taup1(i) )
306 phi(i) = atan2( real( x11(i+1,i) ), real( x21(i,i) ) )
307 c = cos( phi(i) )
308 s = sin( phi(i) )
309 CALL clarf1f( 'L', p-i, q-i, x11(i+1,i), 1,
310 $ conjg(taup1(i)), x11(i+1,i+1), ldx11,
311 $ work(ilarf) )
312 END IF
313 CALL clarf1f( 'L', m-p-i+1, q-i, x21(i,i), 1,
314 $ conjg(taup2(i)), x21(i,i+1), ldx21,
315 $ work(ilarf) )
316*
317 END DO
318*
319* Reduce the bottom-right portion of X21 to the identity matrix
320*
321 DO i = p + 1, q
322 CALL clarfgp( m-p-i+1, x21(i,i), x21(i+1,i), 1, taup2(i) )
323 CALL clarf1f( 'L', m-p-i+1, q-i, x21(i,i), 1,
324 $ conjg(taup2(i)), x21(i,i+1), ldx21,
325 $ work(ilarf) )
326 END DO
327*
328 RETURN
329*
330* End of CUNBDB2
331*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine clarf1f(side, m, n, v, incv, tau, c, ldc, work)
CLARF1F applies an elementary reflector to a general rectangular
Definition clarf1f.f:126
subroutine clacgv(n, x, incx)
CLACGV conjugates a complex vector.
Definition clacgv.f:72
subroutine clarfgp(n, alpha, x, incx, tau)
CLARFGP generates an elementary reflector (Householder matrix) with non-negative beta.
Definition clarfgp.f:102
real(wp) function scnrm2(n, x, incx)
SCNRM2
Definition scnrm2.f90:90
subroutine csrot(n, cx, incx, cy, incy, c, s)
CSROT
Definition csrot.f:98
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
subroutine cscal(n, ca, cx, incx)
CSCAL
Definition cscal.f:78
subroutine cunbdb5(m1, m2, n, x1, incx1, x2, incx2, q1, ldq1, q2, ldq2, work, lwork, info)
CUNBDB5
Definition cunbdb5.f:155
Here is the call graph for this function:
Here is the caller graph for this function: