LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zqrt03()

subroutine zqrt03 ( integer m,
integer n,
integer k,
complex*16, dimension( lda, * ) af,
complex*16, dimension( lda, * ) c,
complex*16, dimension( lda, * ) cc,
complex*16, dimension( lda, * ) q,
integer lda,
complex*16, dimension( * ) tau,
complex*16, dimension( lwork ) work,
integer lwork,
double precision, dimension( * ) rwork,
double precision, dimension( * ) result )

ZQRT03

Purpose:
!>
!> ZQRT03 tests ZUNMQR, which computes Q*C, Q'*C, C*Q or C*Q'.
!>
!> ZQRT03 compares the results of a call to ZUNMQR with the results of
!> forming Q explicitly by a call to ZUNGQR and then performing matrix
!> multiplication by a call to ZGEMM.
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The order of the orthogonal matrix Q.  M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of rows or columns of the matrix C; C is m-by-n if
!>          Q is applied from the left, or n-by-m if Q is applied from
!>          the right.  N >= 0.
!> 
[in]K
!>          K is INTEGER
!>          The number of elementary reflectors whose product defines the
!>          orthogonal matrix Q.  M >= K >= 0.
!> 
[in]AF
!>          AF is COMPLEX*16 array, dimension (LDA,N)
!>          Details of the QR factorization of an m-by-n matrix, as
!>          returned by ZGEQRF. See ZGEQRF for further details.
!> 
[out]C
!>          C is COMPLEX*16 array, dimension (LDA,N)
!> 
[out]CC
!>          CC is COMPLEX*16 array, dimension (LDA,N)
!> 
[out]Q
!>          Q is COMPLEX*16 array, dimension (LDA,M)
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the arrays AF, C, CC, and Q.
!> 
[in]TAU
!>          TAU is COMPLEX*16 array, dimension (min(M,N))
!>          The scalar factors of the elementary reflectors corresponding
!>          to the QR factorization in AF.
!> 
[out]WORK
!>          WORK is COMPLEX*16 array, dimension (LWORK)
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The length of WORK.  LWORK must be at least M, and should be
!>          M*NB, where NB is the blocksize for this environment.
!> 
[out]RWORK
!>          RWORK is DOUBLE PRECISION array, dimension (M)
!> 
[out]RESULT
!>          RESULT is DOUBLE PRECISION array, dimension (4)
!>          The test ratios compare two techniques for multiplying a
!>          random matrix C by an m-by-m orthogonal matrix Q.
!>          RESULT(1) = norm( Q*C - Q*C )  / ( M * norm(C) * EPS )
!>          RESULT(2) = norm( C*Q - C*Q )  / ( M * norm(C) * EPS )
!>          RESULT(3) = norm( Q'*C - Q'*C )/ ( M * norm(C) * EPS )
!>          RESULT(4) = norm( C*Q' - C*Q' )/ ( M * norm(C) * EPS )
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 134 of file zqrt03.f.

136*
137* -- LAPACK test routine --
138* -- LAPACK is a software package provided by Univ. of Tennessee, --
139* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
140*
141* .. Scalar Arguments ..
142 INTEGER K, LDA, LWORK, M, N
143* ..
144* .. Array Arguments ..
145 DOUBLE PRECISION RESULT( * ), RWORK( * )
146 COMPLEX*16 AF( LDA, * ), C( LDA, * ), CC( LDA, * ),
147 $ Q( LDA, * ), TAU( * ), WORK( LWORK )
148* ..
149*
150* =====================================================================
151*
152* .. Parameters ..
153 DOUBLE PRECISION ZERO, ONE
154 parameter( zero = 0.0d+0, one = 1.0d+0 )
155 COMPLEX*16 ROGUE
156 parameter( rogue = ( -1.0d+10, -1.0d+10 ) )
157* ..
158* .. Local Scalars ..
159 CHARACTER SIDE, TRANS
160 INTEGER INFO, ISIDE, ITRANS, J, MC, NC
161 DOUBLE PRECISION CNORM, EPS, RESID
162* ..
163* .. External Functions ..
164 LOGICAL LSAME
165 DOUBLE PRECISION DLAMCH, ZLANGE
166 EXTERNAL lsame, dlamch, zlange
167* ..
168* .. External Subroutines ..
169 EXTERNAL zgemm, zlacpy, zlarnv, zlaset, zungqr, zunmqr
170* ..
171* .. Local Arrays ..
172 INTEGER ISEED( 4 )
173* ..
174* .. Intrinsic Functions ..
175 INTRINSIC dble, dcmplx, max
176* ..
177* .. Scalars in Common ..
178 CHARACTER*32 SRNAMT
179* ..
180* .. Common blocks ..
181 COMMON / srnamc / srnamt
182* ..
183* .. Data statements ..
184 DATA iseed / 1988, 1989, 1990, 1991 /
185* ..
186* .. Executable Statements ..
187*
188 eps = dlamch( 'Epsilon' )
189*
190* Copy the first k columns of the factorization to the array Q
191*
192 CALL zlaset( 'Full', m, m, rogue, rogue, q, lda )
193 CALL zlacpy( 'Lower', m-1, k, af( 2, 1 ), lda, q( 2, 1 ), lda )
194*
195* Generate the m-by-m matrix Q
196*
197 srnamt = 'ZUNGQR'
198 CALL zungqr( m, m, k, q, lda, tau, work, lwork, info )
199*
200 DO 30 iside = 1, 2
201 IF( iside.EQ.1 ) THEN
202 side = 'L'
203 mc = m
204 nc = n
205 ELSE
206 side = 'R'
207 mc = n
208 nc = m
209 END IF
210*
211* Generate MC by NC matrix C
212*
213 DO 10 j = 1, nc
214 CALL zlarnv( 2, iseed, mc, c( 1, j ) )
215 10 CONTINUE
216 cnorm = zlange( '1', mc, nc, c, lda, rwork )
217 IF( cnorm.EQ.zero )
218 $ cnorm = one
219*
220 DO 20 itrans = 1, 2
221 IF( itrans.EQ.1 ) THEN
222 trans = 'N'
223 ELSE
224 trans = 'C'
225 END IF
226*
227* Copy C
228*
229 CALL zlacpy( 'Full', mc, nc, c, lda, cc, lda )
230*
231* Apply Q or Q' to C
232*
233 srnamt = 'ZUNMQR'
234 CALL zunmqr( side, trans, mc, nc, k, af, lda, tau, cc, lda,
235 $ work, lwork, info )
236*
237* Form explicit product and subtract
238*
239 IF( lsame( side, 'L' ) ) THEN
240 CALL zgemm( trans, 'No transpose', mc, nc, mc,
241 $ dcmplx( -one ), q, lda, c, lda,
242 $ dcmplx( one ), cc, lda )
243 ELSE
244 CALL zgemm( 'No transpose', trans, mc, nc, nc,
245 $ dcmplx( -one ), c, lda, q, lda,
246 $ dcmplx( one ), cc, lda )
247 END IF
248*
249* Compute error in the difference
250*
251 resid = zlange( '1', mc, nc, cc, lda, rwork )
252 result( ( iside-1 )*2+itrans ) = resid /
253 $ ( dble( max( 1, m ) )*cnorm*eps )
254*
255 20 CONTINUE
256 30 CONTINUE
257*
258 RETURN
259*
260* End of ZQRT03
261*
subroutine zgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
ZGEMM
Definition zgemm.f:188
subroutine zlacpy(uplo, m, n, a, lda, b, ldb)
ZLACPY copies all or part of one two-dimensional array to another.
Definition zlacpy.f:101
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
double precision function zlange(norm, m, n, a, lda, work)
ZLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition zlange.f:113
subroutine zlarnv(idist, iseed, n, x)
ZLARNV returns a vector of random numbers from a uniform or normal distribution.
Definition zlarnv.f:97
subroutine zlaset(uplo, m, n, alpha, beta, a, lda)
ZLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition zlaset.f:104
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine zungqr(m, n, k, a, lda, tau, work, lwork, info)
ZUNGQR
Definition zungqr.f:126
subroutine zunmqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
ZUNMQR
Definition zunmqr.f:165
Here is the call graph for this function:
Here is the caller graph for this function: