LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ zgbsv()

subroutine zgbsv ( integer n,
integer kl,
integer ku,
integer nrhs,
complex*16, dimension( ldab, * ) ab,
integer ldab,
integer, dimension( * ) ipiv,
complex*16, dimension( ldb, * ) b,
integer ldb,
integer info )

ZGBSV computes the solution to system of linear equations A * X = B for GB matrices (simple driver)

Download ZGBSV + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!> !> ZGBSV computes the solution to a complex system of linear equations !> A * X = B, where A is a band matrix of order N with KL subdiagonals !> and KU superdiagonals, and X and B are N-by-NRHS matrices. !> !> The LU decomposition with partial pivoting and row interchanges is !> used to factor A as A = L * U, where L is a product of permutation !> and unit lower triangular matrices with KL subdiagonals, and U is !> upper triangular with KL+KU superdiagonals. The factored form of A !> is then used to solve the system of equations A * X = B. !>
Parameters
[in]N
!> N is INTEGER !> The number of linear equations, i.e., the order of the !> matrix A. N >= 0. !>
[in]KL
!> KL is INTEGER !> The number of subdiagonals within the band of A. KL >= 0. !>
[in]KU
!> KU is INTEGER !> The number of superdiagonals within the band of A. KU >= 0. !>
[in]NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
[in,out]AB
!> AB is COMPLEX*16 array, dimension (LDAB,N) !> On entry, the matrix A in band storage, in rows KL+1 to !> 2*KL+KU+1; rows 1 to KL of the array need not be set. !> The j-th column of A is stored in the j-th column of the !> array AB as follows: !> AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL) !> On exit, details of the factorization: U is stored as an !> upper triangular band matrix with KL+KU superdiagonals in !> rows 1 to KL+KU+1, and the multipliers used during the !> factorization are stored in rows KL+KU+2 to 2*KL+KU+1. !> See below for further details. !>
[in]LDAB
!> LDAB is INTEGER !> The leading dimension of the array AB. LDAB >= 2*KL+KU+1. !>
[out]IPIV
!> IPIV is INTEGER array, dimension (N) !> The pivot indices that define the permutation matrix P; !> row i of the matrix was interchanged with row IPIV(i). !>
[in,out]B
!> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On entry, the N-by-NRHS right hand side matrix B. !> On exit, if INFO = 0, the N-by-NRHS solution matrix X. !>
[in]LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
[out]INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, U(i,i) is exactly zero. The factorization !> has been completed, but the factor U is exactly !> singular, and the solution has not been computed. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The band storage scheme is illustrated by the following example, when !> M = N = 6, KL = 2, KU = 1: !> !> On entry: On exit: !> !> * * * + + + * * * u14 u25 u36 !> * * + + + + * * u13 u24 u35 u46 !> * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 !> a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 !> a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 * !> a31 a42 a53 a64 * * m31 m42 m53 m64 * * !> !> Array elements marked * are not used by the routine; elements marked !> + need not be set on entry, but are required by the routine to store !> elements of U because of fill-in resulting from the row interchanges. !>

Definition at line 159 of file zgbsv.f.

161*
162* -- LAPACK driver routine --
163* -- LAPACK is a software package provided by Univ. of Tennessee, --
164* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
165*
166* .. Scalar Arguments ..
167 INTEGER INFO, KL, KU, LDAB, LDB, N, NRHS
168* ..
169* .. Array Arguments ..
170 INTEGER IPIV( * )
171 COMPLEX*16 AB( LDAB, * ), B( LDB, * )
172* ..
173*
174* =====================================================================
175*
176* .. External Subroutines ..
177 EXTERNAL xerbla, zgbtrf, zgbtrs
178* ..
179* .. Intrinsic Functions ..
180 INTRINSIC max
181* ..
182* .. Executable Statements ..
183*
184* Test the input parameters.
185*
186 info = 0
187 IF( n.LT.0 ) THEN
188 info = -1
189 ELSE IF( kl.LT.0 ) THEN
190 info = -2
191 ELSE IF( ku.LT.0 ) THEN
192 info = -3
193 ELSE IF( nrhs.LT.0 ) THEN
194 info = -4
195 ELSE IF( ldab.LT.2*kl+ku+1 ) THEN
196 info = -6
197 ELSE IF( ldb.LT.max( n, 1 ) ) THEN
198 info = -9
199 END IF
200 IF( info.NE.0 ) THEN
201 CALL xerbla( 'ZGBSV ', -info )
202 RETURN
203 END IF
204*
205* Compute the LU factorization of the band matrix A.
206*
207 CALL zgbtrf( n, n, kl, ku, ab, ldab, ipiv, info )
208 IF( info.EQ.0 ) THEN
209*
210* Solve the system A*X = B, overwriting B with X.
211*
212 CALL zgbtrs( 'No transpose', n, kl, ku, nrhs, ab, ldab,
213 $ ipiv,
214 $ b, ldb, info )
215 END IF
216 RETURN
217*
218* End of ZGBSV
219*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zgbtrf(m, n, kl, ku, ab, ldab, ipiv, info)
ZGBTRF
Definition zgbtrf.f:142
subroutine zgbtrs(trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
ZGBTRS
Definition zgbtrs.f:137
Here is the call graph for this function:
Here is the caller graph for this function: