LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zunm2l()

subroutine zunm2l ( character side,
character trans,
integer m,
integer n,
integer k,
complex*16, dimension( lda, * ) a,
integer lda,
complex*16, dimension( * ) tau,
complex*16, dimension( ldc, * ) c,
integer ldc,
complex*16, dimension( * ) work,
integer info )

ZUNM2L multiplies a general matrix by the unitary matrix from a QL factorization determined by cgeqlf (unblocked algorithm).

Download ZUNM2L + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> ZUNM2L overwrites the general complex m-by-n matrix C with
!>
!>       Q * C  if SIDE = 'L' and TRANS = 'N', or
!>
!>       Q**H* C  if SIDE = 'L' and TRANS = 'C', or
!>
!>       C * Q  if SIDE = 'R' and TRANS = 'N', or
!>
!>       C * Q**H if SIDE = 'R' and TRANS = 'C',
!>
!> where Q is a complex unitary matrix defined as the product of k
!> elementary reflectors
!>
!>       Q = H(k) . . . H(2) H(1)
!>
!> as returned by ZGEQLF. Q is of order m if SIDE = 'L' and of order n
!> if SIDE = 'R'.
!> 
Parameters
[in]SIDE
!>          SIDE is CHARACTER*1
!>          = 'L': apply Q or Q**H from the Left
!>          = 'R': apply Q or Q**H from the Right
!> 
[in]TRANS
!>          TRANS is CHARACTER*1
!>          = 'N': apply Q  (No transpose)
!>          = 'C': apply Q**H (Conjugate transpose)
!> 
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix C. M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix C. N >= 0.
!> 
[in]K
!>          K is INTEGER
!>          The number of elementary reflectors whose product defines
!>          the matrix Q.
!>          If SIDE = 'L', M >= K >= 0;
!>          if SIDE = 'R', N >= K >= 0.
!> 
[in]A
!>          A is COMPLEX*16 array, dimension (LDA,K)
!>          The i-th column must contain the vector which defines the
!>          elementary reflector H(i), for i = 1,2,...,k, as returned by
!>          ZGEQLF in the last k columns of its array argument A.
!>          A is modified by the routine but restored on exit.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.
!>          If SIDE = 'L', LDA >= max(1,M);
!>          if SIDE = 'R', LDA >= max(1,N).
!> 
[in]TAU
!>          TAU is COMPLEX*16 array, dimension (K)
!>          TAU(i) must contain the scalar factor of the elementary
!>          reflector H(i), as returned by ZGEQLF.
!> 
[in,out]C
!>          C is COMPLEX*16 array, dimension (LDC,N)
!>          On entry, the m-by-n matrix C.
!>          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
!> 
[in]LDC
!>          LDC is INTEGER
!>          The leading dimension of the array C. LDC >= max(1,M).
!> 
[out]WORK
!>          WORK is COMPLEX*16 array, dimension
!>                                   (N) if SIDE = 'L',
!>                                   (M) if SIDE = 'R'
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 155 of file zunm2l.f.

157*
158* -- LAPACK computational routine --
159* -- LAPACK is a software package provided by Univ. of Tennessee, --
160* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
161*
162* .. Scalar Arguments ..
163 CHARACTER SIDE, TRANS
164 INTEGER INFO, K, LDA, LDC, M, N
165* ..
166* .. Array Arguments ..
167 COMPLEX*16 A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
168* ..
169*
170* =====================================================================
171*
172* .. Parameters ..
173 COMPLEX*16 ONE
174 parameter( one = ( 1.0d+0, 0.0d+0 ) )
175* ..
176* .. Local Scalars ..
177 LOGICAL LEFT, NOTRAN
178 INTEGER I, I1, I2, I3, MI, NI, NQ
179 COMPLEX*16 TAUI
180* ..
181* .. External Functions ..
182 LOGICAL LSAME
183 EXTERNAL lsame
184* ..
185* .. External Subroutines ..
186 EXTERNAL xerbla, zlarf1l
187* ..
188* .. Intrinsic Functions ..
189 INTRINSIC dconjg, max
190* ..
191* .. Executable Statements ..
192*
193* Test the input arguments
194*
195 info = 0
196 left = lsame( side, 'L' )
197 notran = lsame( trans, 'N' )
198*
199* NQ is the order of Q
200*
201 IF( left ) THEN
202 nq = m
203 ELSE
204 nq = n
205 END IF
206 IF( .NOT.left .AND. .NOT.lsame( side, 'R' ) ) THEN
207 info = -1
208 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'C' ) ) THEN
209 info = -2
210 ELSE IF( m.LT.0 ) THEN
211 info = -3
212 ELSE IF( n.LT.0 ) THEN
213 info = -4
214 ELSE IF( k.LT.0 .OR. k.GT.nq ) THEN
215 info = -5
216 ELSE IF( lda.LT.max( 1, nq ) ) THEN
217 info = -7
218 ELSE IF( ldc.LT.max( 1, m ) ) THEN
219 info = -10
220 END IF
221 IF( info.NE.0 ) THEN
222 CALL xerbla( 'ZUNM2L', -info )
223 RETURN
224 END IF
225*
226* Quick return if possible
227*
228 IF( m.EQ.0 .OR. n.EQ.0 .OR. k.EQ.0 )
229 $ RETURN
230*
231 IF( ( left .AND. notran .OR. .NOT.left .AND. .NOT.notran ) ) THEN
232 i1 = 1
233 i2 = k
234 i3 = 1
235 ELSE
236 i1 = k
237 i2 = 1
238 i3 = -1
239 END IF
240*
241 IF( left ) THEN
242 ni = n
243 ELSE
244 mi = m
245 END IF
246*
247 DO 10 i = i1, i2, i3
248 IF( left ) THEN
249*
250* H(i) or H(i)**H is applied to C(1:m-k+i,1:n)
251*
252 mi = m - k + i
253 ELSE
254*
255* H(i) or H(i)**H is applied to C(1:m,1:n-k+i)
256*
257 ni = n - k + i
258 END IF
259*
260* Apply H(i) or H(i)**H
261*
262 IF( notran ) THEN
263 taui = tau( i )
264 ELSE
265 taui = dconjg( tau( i ) )
266 END IF
267 CALL zlarf1l( side, mi, ni, a( 1, i ), 1, taui, c, ldc,
268 $ work )
269 10 CONTINUE
270 RETURN
271*
272* End of ZUNM2L
273*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine zlarf1l(side, m, n, v, incv, tau, c, ldc, work)
ZLARF1L applies an elementary reflector to a general rectangular
Definition zlarf1l.f:130
Here is the call graph for this function:
Here is the caller graph for this function: