LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zlqt03.f
Go to the documentation of this file.
1*> \brief \b ZLQT03
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE ZLQT03( M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK,
12* RWORK, RESULT )
13*
14* .. Scalar Arguments ..
15* INTEGER K, LDA, LWORK, M, N
16* ..
17* .. Array Arguments ..
18* DOUBLE PRECISION RESULT( * ), RWORK( * )
19* COMPLEX*16 AF( LDA, * ), C( LDA, * ), CC( LDA, * ),
20* $ Q( LDA, * ), TAU( * ), WORK( LWORK )
21* ..
22*
23*
24*> \par Purpose:
25* =============
26*>
27*> \verbatim
28*>
29*> ZLQT03 tests ZUNMLQ, which computes Q*C, Q'*C, C*Q or C*Q'.
30*>
31*> ZLQT03 compares the results of a call to ZUNMLQ with the results of
32*> forming Q explicitly by a call to ZUNGLQ and then performing matrix
33*> multiplication by a call to ZGEMM.
34*> \endverbatim
35*
36* Arguments:
37* ==========
38*
39*> \param[in] M
40*> \verbatim
41*> M is INTEGER
42*> The number of rows or columns of the matrix C; C is n-by-m if
43*> Q is applied from the left, or m-by-n if Q is applied from
44*> the right. M >= 0.
45*> \endverbatim
46*>
47*> \param[in] N
48*> \verbatim
49*> N is INTEGER
50*> The order of the orthogonal matrix Q. N >= 0.
51*> \endverbatim
52*>
53*> \param[in] K
54*> \verbatim
55*> K is INTEGER
56*> The number of elementary reflectors whose product defines the
57*> orthogonal matrix Q. N >= K >= 0.
58*> \endverbatim
59*>
60*> \param[in] AF
61*> \verbatim
62*> AF is COMPLEX*16 array, dimension (LDA,N)
63*> Details of the LQ factorization of an m-by-n matrix, as
64*> returned by ZGELQF. See CGELQF for further details.
65*> \endverbatim
66*>
67*> \param[out] C
68*> \verbatim
69*> C is COMPLEX*16 array, dimension (LDA,N)
70*> \endverbatim
71*>
72*> \param[out] CC
73*> \verbatim
74*> CC is COMPLEX*16 array, dimension (LDA,N)
75*> \endverbatim
76*>
77*> \param[out] Q
78*> \verbatim
79*> Q is COMPLEX*16 array, dimension (LDA,N)
80*> \endverbatim
81*>
82*> \param[in] LDA
83*> \verbatim
84*> LDA is INTEGER
85*> The leading dimension of the arrays AF, C, CC, and Q.
86*> \endverbatim
87*>
88*> \param[in] TAU
89*> \verbatim
90*> TAU is COMPLEX*16 array, dimension (min(M,N))
91*> The scalar factors of the elementary reflectors corresponding
92*> to the LQ factorization in AF.
93*> \endverbatim
94*>
95*> \param[out] WORK
96*> \verbatim
97*> WORK is COMPLEX*16 array, dimension (LWORK)
98*> \endverbatim
99*>
100*> \param[in] LWORK
101*> \verbatim
102*> LWORK is INTEGER
103*> The length of WORK. LWORK must be at least M, and should be
104*> M*NB, where NB is the blocksize for this environment.
105*> \endverbatim
106*>
107*> \param[out] RWORK
108*> \verbatim
109*> RWORK is DOUBLE PRECISION array, dimension (M)
110*> \endverbatim
111*>
112*> \param[out] RESULT
113*> \verbatim
114*> RESULT is DOUBLE PRECISION array, dimension (4)
115*> The test ratios compare two techniques for multiplying a
116*> random matrix C by an n-by-n orthogonal matrix Q.
117*> RESULT(1) = norm( Q*C - Q*C ) / ( N * norm(C) * EPS )
118*> RESULT(2) = norm( C*Q - C*Q ) / ( N * norm(C) * EPS )
119*> RESULT(3) = norm( Q'*C - Q'*C )/ ( N * norm(C) * EPS )
120*> RESULT(4) = norm( C*Q' - C*Q' )/ ( N * norm(C) * EPS )
121*> \endverbatim
122*
123* Authors:
124* ========
125*
126*> \author Univ. of Tennessee
127*> \author Univ. of California Berkeley
128*> \author Univ. of Colorado Denver
129*> \author NAG Ltd.
130*
131*> \ingroup complex16_lin
132*
133* =====================================================================
134 SUBROUTINE zlqt03( M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK,
135 $ RWORK, RESULT )
136*
137* -- LAPACK test routine --
138* -- LAPACK is a software package provided by Univ. of Tennessee, --
139* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
140*
141* .. Scalar Arguments ..
142 INTEGER K, LDA, LWORK, M, N
143* ..
144* .. Array Arguments ..
145 DOUBLE PRECISION RESULT( * ), RWORK( * )
146 COMPLEX*16 AF( LDA, * ), C( LDA, * ), CC( LDA, * ),
147 $ q( lda, * ), tau( * ), work( lwork )
148* ..
149*
150* =====================================================================
151*
152* .. Parameters ..
153 DOUBLE PRECISION ZERO, ONE
154 parameter( zero = 0.0d+0, one = 1.0d+0 )
155 COMPLEX*16 ROGUE
156 parameter( rogue = ( -1.0d+10, -1.0d+10 ) )
157* ..
158* .. Local Scalars ..
159 CHARACTER SIDE, TRANS
160 INTEGER INFO, ISIDE, ITRANS, J, MC, NC
161 DOUBLE PRECISION CNORM, EPS, RESID
162* ..
163* .. External Functions ..
164 LOGICAL LSAME
165 DOUBLE PRECISION DLAMCH, ZLANGE
166 EXTERNAL lsame, dlamch, zlange
167* ..
168* .. External Subroutines ..
169 EXTERNAL zgemm, zlacpy, zlarnv, zlaset, zunglq, zunmlq
170* ..
171* .. Local Arrays ..
172 INTEGER ISEED( 4 )
173* ..
174* .. Intrinsic Functions ..
175 INTRINSIC dble, dcmplx, max
176* ..
177* .. Scalars in Common ..
178 CHARACTER*32 SRNAMT
179* ..
180* .. Common blocks ..
181 COMMON / srnamc / srnamt
182* ..
183* .. Data statements ..
184 DATA iseed / 1988, 1989, 1990, 1991 /
185* ..
186* .. Executable Statements ..
187*
188 eps = dlamch( 'Epsilon' )
189*
190* Copy the first k rows of the factorization to the array Q
191*
192 CALL zlaset( 'Full', n, n, rogue, rogue, q, lda )
193 CALL zlacpy( 'Upper', k, n-1, af( 1, 2 ), lda, q( 1, 2 ), lda )
194*
195* Generate the n-by-n matrix Q
196*
197 srnamt = 'ZUNGLQ'
198 CALL zunglq( n, n, k, q, lda, tau, work, lwork, info )
199*
200 DO 30 iside = 1, 2
201 IF( iside.EQ.1 ) THEN
202 side = 'L'
203 mc = n
204 nc = m
205 ELSE
206 side = 'R'
207 mc = m
208 nc = n
209 END IF
210*
211* Generate MC by NC matrix C
212*
213 DO 10 j = 1, nc
214 CALL zlarnv( 2, iseed, mc, c( 1, j ) )
215 10 CONTINUE
216 cnorm = zlange( '1', mc, nc, c, lda, rwork )
217 IF( cnorm.EQ.zero )
218 $ cnorm = one
219*
220 DO 20 itrans = 1, 2
221 IF( itrans.EQ.1 ) THEN
222 trans = 'N'
223 ELSE
224 trans = 'C'
225 END IF
226*
227* Copy C
228*
229 CALL zlacpy( 'Full', mc, nc, c, lda, cc, lda )
230*
231* Apply Q or Q' to C
232*
233 srnamt = 'ZUNMLQ'
234 CALL zunmlq( side, trans, mc, nc, k, af, lda, tau, cc, lda,
235 $ work, lwork, info )
236*
237* Form explicit product and subtract
238*
239 IF( lsame( side, 'L' ) ) THEN
240 CALL zgemm( trans, 'No transpose', mc, nc, mc,
241 $ dcmplx( -one ), q, lda, c, lda,
242 $ dcmplx( one ), cc, lda )
243 ELSE
244 CALL zgemm( 'No transpose', trans, mc, nc, nc,
245 $ dcmplx( -one ), c, lda, q, lda,
246 $ dcmplx( one ), cc, lda )
247 END IF
248*
249* Compute error in the difference
250*
251 resid = zlange( '1', mc, nc, cc, lda, rwork )
252 result( ( iside-1 )*2+itrans ) = resid /
253 $ ( dble( max( 1, n ) )*cnorm*eps )
254*
255 20 CONTINUE
256 30 CONTINUE
257*
258 RETURN
259*
260* End of ZLQT03
261*
262 END
subroutine zgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
ZGEMM
Definition zgemm.f:188
subroutine zlacpy(uplo, m, n, a, lda, b, ldb)
ZLACPY copies all or part of one two-dimensional array to another.
Definition zlacpy.f:103
subroutine zlarnv(idist, iseed, n, x)
ZLARNV returns a vector of random numbers from a uniform or normal distribution.
Definition zlarnv.f:99
subroutine zlaset(uplo, m, n, alpha, beta, a, lda)
ZLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition zlaset.f:106
subroutine zunglq(m, n, k, a, lda, tau, work, lwork, info)
ZUNGLQ
Definition zunglq.f:127
subroutine zunmlq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
ZUNMLQ
Definition zunmlq.f:167
subroutine zlqt03(m, n, k, af, c, cc, q, lda, tau, work, lwork, rwork, result)
ZLQT03
Definition zlqt03.f:136