LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
csymm.f
Go to the documentation of this file.
1*> \brief \b CSYMM
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE CSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
12*
13* .. Scalar Arguments ..
14* COMPLEX ALPHA,BETA
15* INTEGER LDA,LDB,LDC,M,N
16* CHARACTER SIDE,UPLO
17* ..
18* .. Array Arguments ..
19* COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
20* ..
21*
22*
23*> \par Purpose:
24* =============
25*>
26*> \verbatim
27*>
28*> CSYMM performs one of the matrix-matrix operations
29*>
30*> C := alpha*A*B + beta*C,
31*>
32*> or
33*>
34*> C := alpha*B*A + beta*C,
35*>
36*> where alpha and beta are scalars, A is a symmetric matrix and B and
37*> C are m by n matrices.
38*> \endverbatim
39*
40* Arguments:
41* ==========
42*
43*> \param[in] SIDE
44*> \verbatim
45*> SIDE is CHARACTER*1
46*> On entry, SIDE specifies whether the symmetric matrix A
47*> appears on the left or right in the operation as follows:
48*>
49*> SIDE = 'L' or 'l' C := alpha*A*B + beta*C,
50*>
51*> SIDE = 'R' or 'r' C := alpha*B*A + beta*C,
52*> \endverbatim
53*>
54*> \param[in] UPLO
55*> \verbatim
56*> UPLO is CHARACTER*1
57*> On entry, UPLO specifies whether the upper or lower
58*> triangular part of the symmetric matrix A is to be
59*> referenced as follows:
60*>
61*> UPLO = 'U' or 'u' Only the upper triangular part of the
62*> symmetric matrix is to be referenced.
63*>
64*> UPLO = 'L' or 'l' Only the lower triangular part of the
65*> symmetric matrix is to be referenced.
66*> \endverbatim
67*>
68*> \param[in] M
69*> \verbatim
70*> M is INTEGER
71*> On entry, M specifies the number of rows of the matrix C.
72*> M must be at least zero.
73*> \endverbatim
74*>
75*> \param[in] N
76*> \verbatim
77*> N is INTEGER
78*> On entry, N specifies the number of columns of the matrix C.
79*> N must be at least zero.
80*> \endverbatim
81*>
82*> \param[in] ALPHA
83*> \verbatim
84*> ALPHA is COMPLEX
85*> On entry, ALPHA specifies the scalar alpha.
86*> \endverbatim
87*>
88*> \param[in] A
89*> \verbatim
90*> A is COMPLEX array, dimension ( LDA, ka ), where ka is
91*> m when SIDE = 'L' or 'l' and is n otherwise.
92*> Before entry with SIDE = 'L' or 'l', the m by m part of
93*> the array A must contain the symmetric matrix, such that
94*> when UPLO = 'U' or 'u', the leading m by m upper triangular
95*> part of the array A must contain the upper triangular part
96*> of the symmetric matrix and the strictly lower triangular
97*> part of A is not referenced, and when UPLO = 'L' or 'l',
98*> the leading m by m lower triangular part of the array A
99*> must contain the lower triangular part of the symmetric
100*> matrix and the strictly upper triangular part of A is not
101*> referenced.
102*> Before entry with SIDE = 'R' or 'r', the n by n part of
103*> the array A must contain the symmetric matrix, such that
104*> when UPLO = 'U' or 'u', the leading n by n upper triangular
105*> part of the array A must contain the upper triangular part
106*> of the symmetric matrix and the strictly lower triangular
107*> part of A is not referenced, and when UPLO = 'L' or 'l',
108*> the leading n by n lower triangular part of the array A
109*> must contain the lower triangular part of the symmetric
110*> matrix and the strictly upper triangular part of A is not
111*> referenced.
112*> \endverbatim
113*>
114*> \param[in] LDA
115*> \verbatim
116*> LDA is INTEGER
117*> On entry, LDA specifies the first dimension of A as declared
118*> in the calling (sub) program. When SIDE = 'L' or 'l' then
119*> LDA must be at least max( 1, m ), otherwise LDA must be at
120*> least max( 1, n ).
121*> \endverbatim
122*>
123*> \param[in] B
124*> \verbatim
125*> B is COMPLEX array, dimension ( LDB, N )
126*> Before entry, the leading m by n part of the array B must
127*> contain the matrix B.
128*> \endverbatim
129*>
130*> \param[in] LDB
131*> \verbatim
132*> LDB is INTEGER
133*> On entry, LDB specifies the first dimension of B as declared
134*> in the calling (sub) program. LDB must be at least
135*> max( 1, m ).
136*> \endverbatim
137*>
138*> \param[in] BETA
139*> \verbatim
140*> BETA is COMPLEX
141*> On entry, BETA specifies the scalar beta. When BETA is
142*> supplied as zero then C need not be set on input.
143*> \endverbatim
144*>
145*> \param[in,out] C
146*> \verbatim
147*> C is COMPLEX array, dimension ( LDC, N )
148*> Before entry, the leading m by n part of the array C must
149*> contain the matrix C, except when beta is zero, in which
150*> case C need not be set on entry.
151*> On exit, the array C is overwritten by the m by n updated
152*> matrix.
153*> \endverbatim
154*>
155*> \param[in] LDC
156*> \verbatim
157*> LDC is INTEGER
158*> On entry, LDC specifies the first dimension of C as declared
159*> in the calling (sub) program. LDC must be at least
160*> max( 1, m ).
161*> \endverbatim
162*
163* Authors:
164* ========
165*
166*> \author Univ. of Tennessee
167*> \author Univ. of California Berkeley
168*> \author Univ. of Colorado Denver
169*> \author NAG Ltd.
170*
171*> \ingroup hemm
172*
173*> \par Further Details:
174* =====================
175*>
176*> \verbatim
177*>
178*> Level 3 Blas routine.
179*>
180*> -- Written on 8-February-1989.
181*> Jack Dongarra, Argonne National Laboratory.
182*> Iain Duff, AERE Harwell.
183*> Jeremy Du Croz, Numerical Algorithms Group Ltd.
184*> Sven Hammarling, Numerical Algorithms Group Ltd.
185*> \endverbatim
186*>
187* =====================================================================
188 SUBROUTINE csymm(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
189*
190* -- Reference BLAS level3 routine --
191* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
192* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
193*
194* .. Scalar Arguments ..
195 COMPLEX ALPHA,BETA
196 INTEGER LDA,LDB,LDC,M,N
197 CHARACTER SIDE,UPLO
198* ..
199* .. Array Arguments ..
200 COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
201* ..
202*
203* =====================================================================
204*
205* .. External Functions ..
206 LOGICAL LSAME
207 EXTERNAL lsame
208* ..
209* .. External Subroutines ..
210 EXTERNAL xerbla
211* ..
212* .. Intrinsic Functions ..
213 INTRINSIC max
214* ..
215* .. Local Scalars ..
216 COMPLEX TEMP1,TEMP2
217 INTEGER I,INFO,J,K,NROWA
218 LOGICAL UPPER
219* ..
220* .. Parameters ..
221 COMPLEX ONE
222 parameter(one= (1.0e+0,0.0e+0))
223 COMPLEX ZERO
224 parameter(zero= (0.0e+0,0.0e+0))
225* ..
226*
227* Set NROWA as the number of rows of A.
228*
229 IF (lsame(side,'L')) THEN
230 nrowa = m
231 ELSE
232 nrowa = n
233 END IF
234 upper = lsame(uplo,'U')
235*
236* Test the input parameters.
237*
238 info = 0
239 IF ((.NOT.lsame(side,'L')) .AND.
240 + (.NOT.lsame(side,'R'))) THEN
241 info = 1
242 ELSE IF ((.NOT.upper) .AND.
243 + (.NOT.lsame(uplo,'L'))) THEN
244 info = 2
245 ELSE IF (m.LT.0) THEN
246 info = 3
247 ELSE IF (n.LT.0) THEN
248 info = 4
249 ELSE IF (lda.LT.max(1,nrowa)) THEN
250 info = 7
251 ELSE IF (ldb.LT.max(1,m)) THEN
252 info = 9
253 ELSE IF (ldc.LT.max(1,m)) THEN
254 info = 12
255 END IF
256 IF (info.NE.0) THEN
257 CALL xerbla('CSYMM ',info)
258 RETURN
259 END IF
260*
261* Quick return if possible.
262*
263 IF ((m.EQ.0) .OR. (n.EQ.0) .OR.
264 + ((alpha.EQ.zero).AND. (beta.EQ.one))) RETURN
265*
266* And when alpha.eq.zero.
267*
268 IF (alpha.EQ.zero) THEN
269 IF (beta.EQ.zero) THEN
270 DO 20 j = 1,n
271 DO 10 i = 1,m
272 c(i,j) = zero
273 10 CONTINUE
274 20 CONTINUE
275 ELSE
276 DO 40 j = 1,n
277 DO 30 i = 1,m
278 c(i,j) = beta*c(i,j)
279 30 CONTINUE
280 40 CONTINUE
281 END IF
282 RETURN
283 END IF
284*
285* Start the operations.
286*
287 IF (lsame(side,'L')) THEN
288*
289* Form C := alpha*A*B + beta*C.
290*
291 IF (upper) THEN
292 DO 70 j = 1,n
293 DO 60 i = 1,m
294 temp1 = alpha*b(i,j)
295 temp2 = zero
296 DO 50 k = 1,i - 1
297 c(k,j) = c(k,j) + temp1*a(k,i)
298 temp2 = temp2 + b(k,j)*a(k,i)
299 50 CONTINUE
300 IF (beta.EQ.zero) THEN
301 c(i,j) = temp1*a(i,i) + alpha*temp2
302 ELSE
303 c(i,j) = beta*c(i,j) + temp1*a(i,i) +
304 + alpha*temp2
305 END IF
306 60 CONTINUE
307 70 CONTINUE
308 ELSE
309 DO 100 j = 1,n
310 DO 90 i = m,1,-1
311 temp1 = alpha*b(i,j)
312 temp2 = zero
313 DO 80 k = i + 1,m
314 c(k,j) = c(k,j) + temp1*a(k,i)
315 temp2 = temp2 + b(k,j)*a(k,i)
316 80 CONTINUE
317 IF (beta.EQ.zero) THEN
318 c(i,j) = temp1*a(i,i) + alpha*temp2
319 ELSE
320 c(i,j) = beta*c(i,j) + temp1*a(i,i) +
321 + alpha*temp2
322 END IF
323 90 CONTINUE
324 100 CONTINUE
325 END IF
326 ELSE
327*
328* Form C := alpha*B*A + beta*C.
329*
330 DO 170 j = 1,n
331 temp1 = alpha*a(j,j)
332 IF (beta.EQ.zero) THEN
333 DO 110 i = 1,m
334 c(i,j) = temp1*b(i,j)
335 110 CONTINUE
336 ELSE
337 DO 120 i = 1,m
338 c(i,j) = beta*c(i,j) + temp1*b(i,j)
339 120 CONTINUE
340 END IF
341 DO 140 k = 1,j - 1
342 IF (upper) THEN
343 temp1 = alpha*a(k,j)
344 ELSE
345 temp1 = alpha*a(j,k)
346 END IF
347 DO 130 i = 1,m
348 c(i,j) = c(i,j) + temp1*b(i,k)
349 130 CONTINUE
350 140 CONTINUE
351 DO 160 k = j + 1,n
352 IF (upper) THEN
353 temp1 = alpha*a(j,k)
354 ELSE
355 temp1 = alpha*a(k,j)
356 END IF
357 DO 150 i = 1,m
358 c(i,j) = c(i,j) + temp1*b(i,k)
359 150 CONTINUE
360 160 CONTINUE
361 170 CONTINUE
362 END IF
363*
364 RETURN
365*
366* End of CSYMM
367*
368 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine csymm(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)
CSYMM
Definition csymm.f:189