LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dsposv()

subroutine dsposv ( character  uplo,
integer  n,
integer  nrhs,
double precision, dimension( lda, * )  a,
integer  lda,
double precision, dimension( ldb, * )  b,
integer  ldb,
double precision, dimension( ldx, * )  x,
integer  ldx,
double precision, dimension( n, * )  work,
real, dimension( * )  swork,
integer  iter,
integer  info 
)

DSPOSV computes the solution to system of linear equations A * X = B for PO matrices

Download DSPOSV + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 DSPOSV computes the solution to a real system of linear equations
    A * X = B,
 where A is an N-by-N symmetric positive definite matrix and X and B
 are N-by-NRHS matrices.

 DSPOSV first attempts to factorize the matrix in SINGLE PRECISION
 and use this factorization within an iterative refinement procedure
 to produce a solution with DOUBLE PRECISION normwise backward error
 quality (see below). If the approach fails the method switches to a
 DOUBLE PRECISION factorization and solve.

 The iterative refinement is not going to be a winning strategy if
 the ratio SINGLE PRECISION performance over DOUBLE PRECISION
 performance is too small. A reasonable strategy should take the
 number of right-hand sides and the size of the matrix into account.
 This might be done with a call to ILAENV in the future. Up to now, we
 always try iterative refinement.

 The iterative refinement process is stopped if
     ITER > ITERMAX
 or for all the RHS we have:
     RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
 where
     o ITER is the number of the current iteration in the iterative
       refinement process
     o RNRM is the infinity-norm of the residual
     o XNRM is the infinity-norm of the solution
     o ANRM is the infinity-operator-norm of the matrix A
     o EPS is the machine epsilon returned by DLAMCH('Epsilon')
 The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00
 respectively.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
[in]N
          N is INTEGER
          The number of linear equations, i.e., the order of the
          matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.
[in,out]A
          A is DOUBLE PRECISION array,
          dimension (LDA,N)
          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
          N-by-N upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading N-by-N lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.
          On exit, if iterative refinement has been successfully used
          (INFO = 0 and ITER >= 0, see description below), then A is
          unchanged, if double precision factorization has been used
          (INFO = 0 and ITER < 0, see description below), then the
          array A contains the factor U or L from the Cholesky
          factorization A = U**T*U or A = L*L**T.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[in]B
          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
          The N-by-NRHS right hand side matrix B.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[out]X
          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
          If INFO = 0, the N-by-NRHS solution matrix X.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).
[out]WORK
          WORK is DOUBLE PRECISION array, dimension (N,NRHS)
          This array is used to hold the residual vectors.
[out]SWORK
          SWORK is REAL array, dimension (N*(N+NRHS))
          This array is used to use the single precision matrix and the
          right-hand sides or solutions in single precision.
[out]ITER
          ITER is INTEGER
          < 0: iterative refinement has failed, double precision
               factorization has been performed
               -1 : the routine fell back to full precision for
                    implementation- or machine-specific reasons
               -2 : narrowing the precision induced an overflow,
                    the routine fell back to full precision
               -3 : failure of SPOTRF
               -31: stop the iterative refinement after the 30th
                    iterations
          > 0: iterative refinement has been successfully used.
               Returns the number of iterations
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, the leading principal minor of order i
                of (DOUBLE PRECISION) A is not positive, so the
                factorization could not be completed, and the solution
                has not been computed.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 197 of file dsposv.f.

199*
200* -- LAPACK driver routine --
201* -- LAPACK is a software package provided by Univ. of Tennessee, --
202* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
203*
204* .. Scalar Arguments ..
205 CHARACTER UPLO
206 INTEGER INFO, ITER, LDA, LDB, LDX, N, NRHS
207* ..
208* .. Array Arguments ..
209 REAL SWORK( * )
210 DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( N, * ),
211 $ X( LDX, * )
212* ..
213*
214* =====================================================================
215*
216* .. Parameters ..
217 LOGICAL DOITREF
218 parameter( doitref = .true. )
219*
220 INTEGER ITERMAX
221 parameter( itermax = 30 )
222*
223 DOUBLE PRECISION BWDMAX
224 parameter( bwdmax = 1.0e+00 )
225*
226 DOUBLE PRECISION NEGONE, ONE
227 parameter( negone = -1.0d+0, one = 1.0d+0 )
228*
229* .. Local Scalars ..
230 INTEGER I, IITER, PTSA, PTSX
231 DOUBLE PRECISION ANRM, CTE, EPS, RNRM, XNRM
232*
233* .. External Subroutines ..
234 EXTERNAL daxpy, dsymm, dlacpy, dlat2s, dlag2s, slag2d,
236* ..
237* .. External Functions ..
238 INTEGER IDAMAX
239 DOUBLE PRECISION DLAMCH, DLANSY
240 LOGICAL LSAME
241 EXTERNAL idamax, dlamch, dlansy, lsame
242* ..
243* .. Intrinsic Functions ..
244 INTRINSIC abs, dble, max, sqrt
245* ..
246* .. Executable Statements ..
247*
248 info = 0
249 iter = 0
250*
251* Test the input parameters.
252*
253 IF( .NOT.lsame( uplo, 'U' ) .AND. .NOT.lsame( uplo, 'L' ) ) THEN
254 info = -1
255 ELSE IF( n.LT.0 ) THEN
256 info = -2
257 ELSE IF( nrhs.LT.0 ) THEN
258 info = -3
259 ELSE IF( lda.LT.max( 1, n ) ) THEN
260 info = -5
261 ELSE IF( ldb.LT.max( 1, n ) ) THEN
262 info = -7
263 ELSE IF( ldx.LT.max( 1, n ) ) THEN
264 info = -9
265 END IF
266 IF( info.NE.0 ) THEN
267 CALL xerbla( 'DSPOSV', -info )
268 RETURN
269 END IF
270*
271* Quick return if (N.EQ.0).
272*
273 IF( n.EQ.0 )
274 $ RETURN
275*
276* Skip single precision iterative refinement if a priori slower
277* than double precision factorization.
278*
279 IF( .NOT.doitref ) THEN
280 iter = -1
281 GO TO 40
282 END IF
283*
284* Compute some constants.
285*
286 anrm = dlansy( 'I', uplo, n, a, lda, work )
287 eps = dlamch( 'Epsilon' )
288 cte = anrm*eps*sqrt( dble( n ) )*bwdmax
289*
290* Set the indices PTSA, PTSX for referencing SA and SX in SWORK.
291*
292 ptsa = 1
293 ptsx = ptsa + n*n
294*
295* Convert B from double precision to single precision and store the
296* result in SX.
297*
298 CALL dlag2s( n, nrhs, b, ldb, swork( ptsx ), n, info )
299*
300 IF( info.NE.0 ) THEN
301 iter = -2
302 GO TO 40
303 END IF
304*
305* Convert A from double precision to single precision and store the
306* result in SA.
307*
308 CALL dlat2s( uplo, n, a, lda, swork( ptsa ), n, info )
309*
310 IF( info.NE.0 ) THEN
311 iter = -2
312 GO TO 40
313 END IF
314*
315* Compute the Cholesky factorization of SA.
316*
317 CALL spotrf( uplo, n, swork( ptsa ), n, info )
318*
319 IF( info.NE.0 ) THEN
320 iter = -3
321 GO TO 40
322 END IF
323*
324* Solve the system SA*SX = SB.
325*
326 CALL spotrs( uplo, n, nrhs, swork( ptsa ), n, swork( ptsx ), n,
327 $ info )
328*
329* Convert SX back to double precision
330*
331 CALL slag2d( n, nrhs, swork( ptsx ), n, x, ldx, info )
332*
333* Compute R = B - AX (R is WORK).
334*
335 CALL dlacpy( 'All', n, nrhs, b, ldb, work, n )
336*
337 CALL dsymm( 'Left', uplo, n, nrhs, negone, a, lda, x, ldx, one,
338 $ work, n )
339*
340* Check whether the NRHS normwise backward errors satisfy the
341* stopping criterion. If yes, set ITER=0 and return.
342*
343 DO i = 1, nrhs
344 xnrm = abs( x( idamax( n, x( 1, i ), 1 ), i ) )
345 rnrm = abs( work( idamax( n, work( 1, i ), 1 ), i ) )
346 IF( rnrm.GT.xnrm*cte )
347 $ GO TO 10
348 END DO
349*
350* If we are here, the NRHS normwise backward errors satisfy the
351* stopping criterion. We are good to exit.
352*
353 iter = 0
354 RETURN
355*
356 10 CONTINUE
357*
358 DO 30 iiter = 1, itermax
359*
360* Convert R (in WORK) from double precision to single precision
361* and store the result in SX.
362*
363 CALL dlag2s( n, nrhs, work, n, swork( ptsx ), n, info )
364*
365 IF( info.NE.0 ) THEN
366 iter = -2
367 GO TO 40
368 END IF
369*
370* Solve the system SA*SX = SR.
371*
372 CALL spotrs( uplo, n, nrhs, swork( ptsa ), n, swork( ptsx ), n,
373 $ info )
374*
375* Convert SX back to double precision and update the current
376* iterate.
377*
378 CALL slag2d( n, nrhs, swork( ptsx ), n, work, n, info )
379*
380 DO i = 1, nrhs
381 CALL daxpy( n, one, work( 1, i ), 1, x( 1, i ), 1 )
382 END DO
383*
384* Compute R = B - AX (R is WORK).
385*
386 CALL dlacpy( 'All', n, nrhs, b, ldb, work, n )
387*
388 CALL dsymm( 'L', uplo, n, nrhs, negone, a, lda, x, ldx, one,
389 $ work, n )
390*
391* Check whether the NRHS normwise backward errors satisfy the
392* stopping criterion. If yes, set ITER=IITER>0 and return.
393*
394 DO i = 1, nrhs
395 xnrm = abs( x( idamax( n, x( 1, i ), 1 ), i ) )
396 rnrm = abs( work( idamax( n, work( 1, i ), 1 ), i ) )
397 IF( rnrm.GT.xnrm*cte )
398 $ GO TO 20
399 END DO
400*
401* If we are here, the NRHS normwise backward errors satisfy the
402* stopping criterion, we are good to exit.
403*
404 iter = iiter
405*
406 RETURN
407*
408 20 CONTINUE
409*
410 30 CONTINUE
411*
412* If we are at this place of the code, this is because we have
413* performed ITER=ITERMAX iterations and never satisfied the
414* stopping criterion, set up the ITER flag accordingly and follow
415* up on double precision routine.
416*
417 iter = -itermax - 1
418*
419 40 CONTINUE
420*
421* Single-precision iterative refinement failed to converge to a
422* satisfactory solution, so we resort to double precision.
423*
424 CALL dpotrf( uplo, n, a, lda, info )
425*
426 IF( info.NE.0 )
427 $ RETURN
428*
429 CALL dlacpy( 'All', n, nrhs, b, ldb, x, ldx )
430 CALL dpotrs( uplo, n, nrhs, a, lda, x, ldx, info )
431*
432 RETURN
433*
434* End of DSPOSV
435*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dlag2s(m, n, a, lda, sa, ldsa, info)
DLAG2S converts a double precision matrix to a single precision matrix.
Definition dlag2s.f:108
subroutine slag2d(m, n, sa, ldsa, a, lda, info)
SLAG2D converts a single precision matrix to a double precision matrix.
Definition slag2d.f:104
subroutine dlat2s(uplo, n, a, lda, sa, ldsa, info)
DLAT2S converts a double-precision triangular matrix to a single-precision triangular matrix.
Definition dlat2s.f:111
subroutine daxpy(n, da, dx, incx, dy, incy)
DAXPY
Definition daxpy.f:89
subroutine dsymm(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)
DSYMM
Definition dsymm.f:189
integer function idamax(n, dx, incx)
IDAMAX
Definition idamax.f:71
subroutine dlacpy(uplo, m, n, a, lda, b, ldb)
DLACPY copies all or part of one two-dimensional array to another.
Definition dlacpy.f:103
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
double precision function dlansy(norm, uplo, n, a, lda, work)
DLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition dlansy.f:122
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine dpotrf(uplo, n, a, lda, info)
DPOTRF
Definition dpotrf.f:107
subroutine spotrf(uplo, n, a, lda, info)
SPOTRF
Definition spotrf.f:107
subroutine dpotrs(uplo, n, nrhs, a, lda, b, ldb, info)
DPOTRS
Definition dpotrs.f:110
subroutine spotrs(uplo, n, nrhs, a, lda, b, ldb, info)
SPOTRS
Definition spotrs.f:110
Here is the call graph for this function:
Here is the caller graph for this function: