LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine zlaev2 | ( | complex*16 | a, |
complex*16 | b, | ||
complex*16 | c, | ||
double precision | rt1, | ||
double precision | rt2, | ||
double precision | cs1, | ||
complex*16 | sn1 ) |
ZLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.
Download ZLAEV2 + dependencies [TGZ] [ZIP] [TXT]
!> !> ZLAEV2 computes the eigendecomposition of a 2-by-2 Hermitian matrix !> [ A B ] !> [ CONJG(B) C ]. !> On return, RT1 is the eigenvalue of larger absolute value, RT2 is the !> eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right !> eigenvector for RT1, giving the decomposition !> !> [ CS1 CONJG(SN1) ] [ A B ] [ CS1 -CONJG(SN1) ] = [ RT1 0 ] !> [-SN1 CS1 ] [ CONJG(B) C ] [ SN1 CS1 ] [ 0 RT2 ]. !>
[in] | A | !> A is COMPLEX*16 !> The (1,1) element of the 2-by-2 matrix. !> |
[in] | B | !> B is COMPLEX*16 !> The (1,2) element and the conjugate of the (2,1) element of !> the 2-by-2 matrix. !> |
[in] | C | !> C is COMPLEX*16 !> The (2,2) element of the 2-by-2 matrix. !> |
[out] | RT1 | !> RT1 is DOUBLE PRECISION !> The eigenvalue of larger absolute value. !> |
[out] | RT2 | !> RT2 is DOUBLE PRECISION !> The eigenvalue of smaller absolute value. !> |
[out] | CS1 | !> CS1 is DOUBLE PRECISION !> |
[out] | SN1 | !> SN1 is COMPLEX*16 !> The vector (CS1, SN1) is a unit right eigenvector for RT1. !> |
!> !> RT1 is accurate to a few ulps barring over/underflow. !> !> RT2 may be inaccurate if there is massive cancellation in the !> determinant A*C-B*B; higher precision or correctly rounded or !> correctly truncated arithmetic would be needed to compute RT2 !> accurately in all cases. !> !> CS1 and SN1 are accurate to a few ulps barring over/underflow. !> !> Overflow is possible only if RT1 is within a factor of 5 of overflow. !> Underflow is harmless if the input data is 0 or exceeds !> underflow_threshold / macheps. !>
Definition at line 118 of file zlaev2.f.