LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zlalsa.f
Go to the documentation of this file.
1*> \brief \b ZLALSA computes the SVD of the coefficient matrix in compact form. Used by sgelsd.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZLALSA + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlalsa.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlalsa.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlalsa.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE ZLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U,
22* LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR,
23* GIVCOL, LDGCOL, PERM, GIVNUM, C, S, RWORK,
24* IWORK, INFO )
25*
26* .. Scalar Arguments ..
27* INTEGER ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS,
28* $ SMLSIZ
29* ..
30* .. Array Arguments ..
31* INTEGER GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
32* $ K( * ), PERM( LDGCOL, * )
33* DOUBLE PRECISION C( * ), DIFL( LDU, * ), DIFR( LDU, * ),
34* $ GIVNUM( LDU, * ), POLES( LDU, * ), RWORK( * ),
35* $ S( * ), U( LDU, * ), VT( LDU, * ), Z( LDU, * )
36* COMPLEX*16 B( LDB, * ), BX( LDBX, * )
37* ..
38*
39*
40*> \par Purpose:
41* =============
42*>
43*> \verbatim
44*>
45*> ZLALSA is an intermediate step in solving the least squares problem
46*> by computing the SVD of the coefficient matrix in compact form (The
47*> singular vectors are computed as products of simple orthogonal
48*> matrices.).
49*>
50*> If ICOMPQ = 0, ZLALSA applies the inverse of the left singular vector
51*> matrix of an upper bidiagonal matrix to the right hand side; and if
52*> ICOMPQ = 1, ZLALSA applies the right singular vector matrix to the
53*> right hand side. The singular vector matrices were generated in
54*> compact form by ZLALSA.
55*> \endverbatim
56*
57* Arguments:
58* ==========
59*
60*> \param[in] ICOMPQ
61*> \verbatim
62*> ICOMPQ is INTEGER
63*> Specifies whether the left or the right singular vector
64*> matrix is involved.
65*> = 0: Left singular vector matrix
66*> = 1: Right singular vector matrix
67*> \endverbatim
68*>
69*> \param[in] SMLSIZ
70*> \verbatim
71*> SMLSIZ is INTEGER
72*> The maximum size of the subproblems at the bottom of the
73*> computation tree.
74*> \endverbatim
75*>
76*> \param[in] N
77*> \verbatim
78*> N is INTEGER
79*> The row and column dimensions of the upper bidiagonal matrix.
80*> \endverbatim
81*>
82*> \param[in] NRHS
83*> \verbatim
84*> NRHS is INTEGER
85*> The number of columns of B and BX. NRHS must be at least 1.
86*> \endverbatim
87*>
88*> \param[in,out] B
89*> \verbatim
90*> B is COMPLEX*16 array, dimension ( LDB, NRHS )
91*> On input, B contains the right hand sides of the least
92*> squares problem in rows 1 through M.
93*> On output, B contains the solution X in rows 1 through N.
94*> \endverbatim
95*>
96*> \param[in] LDB
97*> \verbatim
98*> LDB is INTEGER
99*> The leading dimension of B in the calling subprogram.
100*> LDB must be at least max(1,MAX( M, N ) ).
101*> \endverbatim
102*>
103*> \param[out] BX
104*> \verbatim
105*> BX is COMPLEX*16 array, dimension ( LDBX, NRHS )
106*> On exit, the result of applying the left or right singular
107*> vector matrix to B.
108*> \endverbatim
109*>
110*> \param[in] LDBX
111*> \verbatim
112*> LDBX is INTEGER
113*> The leading dimension of BX.
114*> \endverbatim
115*>
116*> \param[in] U
117*> \verbatim
118*> U is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ).
119*> On entry, U contains the left singular vector matrices of all
120*> subproblems at the bottom level.
121*> \endverbatim
122*>
123*> \param[in] LDU
124*> \verbatim
125*> LDU is INTEGER, LDU = > N.
126*> The leading dimension of arrays U, VT, DIFL, DIFR,
127*> POLES, GIVNUM, and Z.
128*> \endverbatim
129*>
130*> \param[in] VT
131*> \verbatim
132*> VT is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ).
133*> On entry, VT**H contains the right singular vector matrices of
134*> all subproblems at the bottom level.
135*> \endverbatim
136*>
137*> \param[in] K
138*> \verbatim
139*> K is INTEGER array, dimension ( N ).
140*> \endverbatim
141*>
142*> \param[in] DIFL
143*> \verbatim
144*> DIFL is DOUBLE PRECISION array, dimension ( LDU, NLVL ).
145*> where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.
146*> \endverbatim
147*>
148*> \param[in] DIFR
149*> \verbatim
150*> DIFR is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
151*> On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
152*> distances between singular values on the I-th level and
153*> singular values on the (I -1)-th level, and DIFR(*, 2 * I)
154*> record the normalizing factors of the right singular vectors
155*> matrices of subproblems on I-th level.
156*> \endverbatim
157*>
158*> \param[in] Z
159*> \verbatim
160*> Z is DOUBLE PRECISION array, dimension ( LDU, NLVL ).
161*> On entry, Z(1, I) contains the components of the deflation-
162*> adjusted updating row vector for subproblems on the I-th
163*> level.
164*> \endverbatim
165*>
166*> \param[in] POLES
167*> \verbatim
168*> POLES is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
169*> On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old
170*> singular values involved in the secular equations on the I-th
171*> level.
172*> \endverbatim
173*>
174*> \param[in] GIVPTR
175*> \verbatim
176*> GIVPTR is INTEGER array, dimension ( N ).
177*> On entry, GIVPTR( I ) records the number of Givens
178*> rotations performed on the I-th problem on the computation
179*> tree.
180*> \endverbatim
181*>
182*> \param[in] GIVCOL
183*> \verbatim
184*> GIVCOL is INTEGER array, dimension ( LDGCOL, 2 * NLVL ).
185*> On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the
186*> locations of Givens rotations performed on the I-th level on
187*> the computation tree.
188*> \endverbatim
189*>
190*> \param[in] LDGCOL
191*> \verbatim
192*> LDGCOL is INTEGER, LDGCOL = > N.
193*> The leading dimension of arrays GIVCOL and PERM.
194*> \endverbatim
195*>
196*> \param[in] PERM
197*> \verbatim
198*> PERM is INTEGER array, dimension ( LDGCOL, NLVL ).
199*> On entry, PERM(*, I) records permutations done on the I-th
200*> level of the computation tree.
201*> \endverbatim
202*>
203*> \param[in] GIVNUM
204*> \verbatim
205*> GIVNUM is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
206*> On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-
207*> values of Givens rotations performed on the I-th level on the
208*> computation tree.
209*> \endverbatim
210*>
211*> \param[in] C
212*> \verbatim
213*> C is DOUBLE PRECISION array, dimension ( N ).
214*> On entry, if the I-th subproblem is not square,
215*> C( I ) contains the C-value of a Givens rotation related to
216*> the right null space of the I-th subproblem.
217*> \endverbatim
218*>
219*> \param[in] S
220*> \verbatim
221*> S is DOUBLE PRECISION array, dimension ( N ).
222*> On entry, if the I-th subproblem is not square,
223*> S( I ) contains the S-value of a Givens rotation related to
224*> the right null space of the I-th subproblem.
225*> \endverbatim
226*>
227*> \param[out] RWORK
228*> \verbatim
229*> RWORK is DOUBLE PRECISION array, dimension at least
230*> MAX( (SMLSZ+1)*NRHS*3, N*(1+NRHS) + 2*NRHS ).
231*> \endverbatim
232*>
233*> \param[out] IWORK
234*> \verbatim
235*> IWORK is INTEGER array, dimension (3*N)
236*> \endverbatim
237*>
238*> \param[out] INFO
239*> \verbatim
240*> INFO is INTEGER
241*> = 0: successful exit.
242*> < 0: if INFO = -i, the i-th argument had an illegal value.
243*> \endverbatim
244*
245* Authors:
246* ========
247*
248*> \author Univ. of Tennessee
249*> \author Univ. of California Berkeley
250*> \author Univ. of Colorado Denver
251*> \author NAG Ltd.
252*
253*> \ingroup lalsa
254*
255*> \par Contributors:
256* ==================
257*>
258*> Ming Gu and Ren-Cang Li, Computer Science Division, University of
259*> California at Berkeley, USA \n
260*> Osni Marques, LBNL/NERSC, USA \n
261*
262* =====================================================================
263 SUBROUTINE zlalsa( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U,
264 $ LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR,
265 $ GIVCOL, LDGCOL, PERM, GIVNUM, C, S, RWORK,
266 $ IWORK, INFO )
267*
268* -- LAPACK computational routine --
269* -- LAPACK is a software package provided by Univ. of Tennessee, --
270* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
271*
272* .. Scalar Arguments ..
273 INTEGER ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS,
274 $ SMLSIZ
275* ..
276* .. Array Arguments ..
277 INTEGER GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
278 $ K( * ), PERM( LDGCOL, * )
279 DOUBLE PRECISION C( * ), DIFL( LDU, * ), DIFR( LDU, * ),
280 $ givnum( ldu, * ), poles( ldu, * ), rwork( * ),
281 $ s( * ), u( ldu, * ), vt( ldu, * ), z( ldu, * )
282 COMPLEX*16 B( LDB, * ), BX( LDBX, * )
283* ..
284*
285* =====================================================================
286*
287* .. Parameters ..
288 DOUBLE PRECISION ZERO, ONE
289 PARAMETER ( ZERO = 0.0d0, one = 1.0d0 )
290* ..
291* .. Local Scalars ..
292 INTEGER I, I1, IC, IM1, INODE, J, JCOL, JIMAG, JREAL,
293 $ JROW, LF, LL, LVL, LVL2, ND, NDB1, NDIML,
294 $ NDIMR, NL, NLF, NLP1, NLVL, NR, NRF, NRP1, SQRE
295* ..
296* .. External Subroutines ..
297 EXTERNAL dgemm, dlasdt, xerbla, zcopy, zlals0
298* ..
299* .. Intrinsic Functions ..
300 INTRINSIC dble, dcmplx, dimag
301* ..
302* .. Executable Statements ..
303*
304* Test the input parameters.
305*
306 info = 0
307*
308 IF( ( icompq.LT.0 ) .OR. ( icompq.GT.1 ) ) THEN
309 info = -1
310 ELSE IF( smlsiz.LT.3 ) THEN
311 info = -2
312 ELSE IF( n.LT.smlsiz ) THEN
313 info = -3
314 ELSE IF( nrhs.LT.1 ) THEN
315 info = -4
316 ELSE IF( ldb.LT.n ) THEN
317 info = -6
318 ELSE IF( ldbx.LT.n ) THEN
319 info = -8
320 ELSE IF( ldu.LT.n ) THEN
321 info = -10
322 ELSE IF( ldgcol.LT.n ) THEN
323 info = -19
324 END IF
325 IF( info.NE.0 ) THEN
326 CALL xerbla( 'ZLALSA', -info )
327 RETURN
328 END IF
329*
330* Book-keeping and setting up the computation tree.
331*
332 inode = 1
333 ndiml = inode + n
334 ndimr = ndiml + n
335*
336 CALL dlasdt( n, nlvl, nd, iwork( inode ), iwork( ndiml ),
337 $ iwork( ndimr ), smlsiz )
338*
339* The following code applies back the left singular vector factors.
340* For applying back the right singular vector factors, go to 170.
341*
342 IF( icompq.EQ.1 ) THEN
343 GO TO 170
344 END IF
345*
346* The nodes on the bottom level of the tree were solved
347* by DLASDQ. The corresponding left and right singular vector
348* matrices are in explicit form. First apply back the left
349* singular vector matrices.
350*
351 ndb1 = ( nd+1 ) / 2
352 DO 130 i = ndb1, nd
353*
354* IC : center row of each node
355* NL : number of rows of left subproblem
356* NR : number of rows of right subproblem
357* NLF: starting row of the left subproblem
358* NRF: starting row of the right subproblem
359*
360 i1 = i - 1
361 ic = iwork( inode+i1 )
362 nl = iwork( ndiml+i1 )
363 nr = iwork( ndimr+i1 )
364 nlf = ic - nl
365 nrf = ic + 1
366*
367* Since B and BX are complex, the following call to DGEMM
368* is performed in two steps (real and imaginary parts).
369*
370* CALL DGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU,
371* $ B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
372*
373 j = nl*nrhs*2
374 DO 20 jcol = 1, nrhs
375 DO 10 jrow = nlf, nlf + nl - 1
376 j = j + 1
377 rwork( j ) = dble( b( jrow, jcol ) )
378 10 CONTINUE
379 20 CONTINUE
380 CALL dgemm( 'T', 'N', nl, nrhs, nl, one, u( nlf, 1 ), ldu,
381 $ rwork( 1+nl*nrhs*2 ), nl, zero, rwork( 1 ), nl )
382 j = nl*nrhs*2
383 DO 40 jcol = 1, nrhs
384 DO 30 jrow = nlf, nlf + nl - 1
385 j = j + 1
386 rwork( j ) = dimag( b( jrow, jcol ) )
387 30 CONTINUE
388 40 CONTINUE
389 CALL dgemm( 'T', 'N', nl, nrhs, nl, one, u( nlf, 1 ), ldu,
390 $ rwork( 1+nl*nrhs*2 ), nl, zero, rwork( 1+nl*nrhs ),
391 $ nl )
392 jreal = 0
393 jimag = nl*nrhs
394 DO 60 jcol = 1, nrhs
395 DO 50 jrow = nlf, nlf + nl - 1
396 jreal = jreal + 1
397 jimag = jimag + 1
398 bx( jrow, jcol ) = dcmplx( rwork( jreal ),
399 $ rwork( jimag ) )
400 50 CONTINUE
401 60 CONTINUE
402*
403* Since B and BX are complex, the following call to DGEMM
404* is performed in two steps (real and imaginary parts).
405*
406* CALL DGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU,
407* $ B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
408*
409 j = nr*nrhs*2
410 DO 80 jcol = 1, nrhs
411 DO 70 jrow = nrf, nrf + nr - 1
412 j = j + 1
413 rwork( j ) = dble( b( jrow, jcol ) )
414 70 CONTINUE
415 80 CONTINUE
416 CALL dgemm( 'T', 'N', nr, nrhs, nr, one, u( nrf, 1 ), ldu,
417 $ rwork( 1+nr*nrhs*2 ), nr, zero, rwork( 1 ), nr )
418 j = nr*nrhs*2
419 DO 100 jcol = 1, nrhs
420 DO 90 jrow = nrf, nrf + nr - 1
421 j = j + 1
422 rwork( j ) = dimag( b( jrow, jcol ) )
423 90 CONTINUE
424 100 CONTINUE
425 CALL dgemm( 'T', 'N', nr, nrhs, nr, one, u( nrf, 1 ), ldu,
426 $ rwork( 1+nr*nrhs*2 ), nr, zero, rwork( 1+nr*nrhs ),
427 $ nr )
428 jreal = 0
429 jimag = nr*nrhs
430 DO 120 jcol = 1, nrhs
431 DO 110 jrow = nrf, nrf + nr - 1
432 jreal = jreal + 1
433 jimag = jimag + 1
434 bx( jrow, jcol ) = dcmplx( rwork( jreal ),
435 $ rwork( jimag ) )
436 110 CONTINUE
437 120 CONTINUE
438*
439 130 CONTINUE
440*
441* Next copy the rows of B that correspond to unchanged rows
442* in the bidiagonal matrix to BX.
443*
444 DO 140 i = 1, nd
445 ic = iwork( inode+i-1 )
446 CALL zcopy( nrhs, b( ic, 1 ), ldb, bx( ic, 1 ), ldbx )
447 140 CONTINUE
448*
449* Finally go through the left singular vector matrices of all
450* the other subproblems bottom-up on the tree.
451*
452 j = 2**nlvl
453 sqre = 0
454*
455 DO 160 lvl = nlvl, 1, -1
456 lvl2 = 2*lvl - 1
457*
458* find the first node LF and last node LL on
459* the current level LVL
460*
461 IF( lvl.EQ.1 ) THEN
462 lf = 1
463 ll = 1
464 ELSE
465 lf = 2**( lvl-1 )
466 ll = 2*lf - 1
467 END IF
468 DO 150 i = lf, ll
469 im1 = i - 1
470 ic = iwork( inode+im1 )
471 nl = iwork( ndiml+im1 )
472 nr = iwork( ndimr+im1 )
473 nlf = ic - nl
474 nrf = ic + 1
475 j = j - 1
476 CALL zlals0( icompq, nl, nr, sqre, nrhs, bx( nlf, 1 ), ldbx,
477 $ b( nlf, 1 ), ldb, perm( nlf, lvl ),
478 $ givptr( j ), givcol( nlf, lvl2 ), ldgcol,
479 $ givnum( nlf, lvl2 ), ldu, poles( nlf, lvl2 ),
480 $ difl( nlf, lvl ), difr( nlf, lvl2 ),
481 $ z( nlf, lvl ), k( j ), c( j ), s( j ), rwork,
482 $ info )
483 150 CONTINUE
484 160 CONTINUE
485 GO TO 330
486*
487* ICOMPQ = 1: applying back the right singular vector factors.
488*
489 170 CONTINUE
490*
491* First now go through the right singular vector matrices of all
492* the tree nodes top-down.
493*
494 j = 0
495 DO 190 lvl = 1, nlvl
496 lvl2 = 2*lvl - 1
497*
498* Find the first node LF and last node LL on
499* the current level LVL.
500*
501 IF( lvl.EQ.1 ) THEN
502 lf = 1
503 ll = 1
504 ELSE
505 lf = 2**( lvl-1 )
506 ll = 2*lf - 1
507 END IF
508 DO 180 i = ll, lf, -1
509 im1 = i - 1
510 ic = iwork( inode+im1 )
511 nl = iwork( ndiml+im1 )
512 nr = iwork( ndimr+im1 )
513 nlf = ic - nl
514 nrf = ic + 1
515 IF( i.EQ.ll ) THEN
516 sqre = 0
517 ELSE
518 sqre = 1
519 END IF
520 j = j + 1
521 CALL zlals0( icompq, nl, nr, sqre, nrhs, b( nlf, 1 ), ldb,
522 $ bx( nlf, 1 ), ldbx, perm( nlf, lvl ),
523 $ givptr( j ), givcol( nlf, lvl2 ), ldgcol,
524 $ givnum( nlf, lvl2 ), ldu, poles( nlf, lvl2 ),
525 $ difl( nlf, lvl ), difr( nlf, lvl2 ),
526 $ z( nlf, lvl ), k( j ), c( j ), s( j ), rwork,
527 $ info )
528 180 CONTINUE
529 190 CONTINUE
530*
531* The nodes on the bottom level of the tree were solved
532* by DLASDQ. The corresponding right singular vector
533* matrices are in explicit form. Apply them back.
534*
535 ndb1 = ( nd+1 ) / 2
536 DO 320 i = ndb1, nd
537 i1 = i - 1
538 ic = iwork( inode+i1 )
539 nl = iwork( ndiml+i1 )
540 nr = iwork( ndimr+i1 )
541 nlp1 = nl + 1
542 IF( i.EQ.nd ) THEN
543 nrp1 = nr
544 ELSE
545 nrp1 = nr + 1
546 END IF
547 nlf = ic - nl
548 nrf = ic + 1
549*
550* Since B and BX are complex, the following call to DGEMM is
551* performed in two steps (real and imaginary parts).
552*
553* CALL DGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU,
554* $ B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
555*
556 j = nlp1*nrhs*2
557 DO 210 jcol = 1, nrhs
558 DO 200 jrow = nlf, nlf + nlp1 - 1
559 j = j + 1
560 rwork( j ) = dble( b( jrow, jcol ) )
561 200 CONTINUE
562 210 CONTINUE
563 CALL dgemm( 'T', 'N', nlp1, nrhs, nlp1, one, vt( nlf, 1 ), ldu,
564 $ rwork( 1+nlp1*nrhs*2 ), nlp1, zero, rwork( 1 ),
565 $ nlp1 )
566 j = nlp1*nrhs*2
567 DO 230 jcol = 1, nrhs
568 DO 220 jrow = nlf, nlf + nlp1 - 1
569 j = j + 1
570 rwork( j ) = dimag( b( jrow, jcol ) )
571 220 CONTINUE
572 230 CONTINUE
573 CALL dgemm( 'T', 'N', nlp1, nrhs, nlp1, one, vt( nlf, 1 ), ldu,
574 $ rwork( 1+nlp1*nrhs*2 ), nlp1, zero,
575 $ rwork( 1+nlp1*nrhs ), nlp1 )
576 jreal = 0
577 jimag = nlp1*nrhs
578 DO 250 jcol = 1, nrhs
579 DO 240 jrow = nlf, nlf + nlp1 - 1
580 jreal = jreal + 1
581 jimag = jimag + 1
582 bx( jrow, jcol ) = dcmplx( rwork( jreal ),
583 $ rwork( jimag ) )
584 240 CONTINUE
585 250 CONTINUE
586*
587* Since B and BX are complex, the following call to DGEMM is
588* performed in two steps (real and imaginary parts).
589*
590* CALL DGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU,
591* $ B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
592*
593 j = nrp1*nrhs*2
594 DO 270 jcol = 1, nrhs
595 DO 260 jrow = nrf, nrf + nrp1 - 1
596 j = j + 1
597 rwork( j ) = dble( b( jrow, jcol ) )
598 260 CONTINUE
599 270 CONTINUE
600 CALL dgemm( 'T', 'N', nrp1, nrhs, nrp1, one, vt( nrf, 1 ), ldu,
601 $ rwork( 1+nrp1*nrhs*2 ), nrp1, zero, rwork( 1 ),
602 $ nrp1 )
603 j = nrp1*nrhs*2
604 DO 290 jcol = 1, nrhs
605 DO 280 jrow = nrf, nrf + nrp1 - 1
606 j = j + 1
607 rwork( j ) = dimag( b( jrow, jcol ) )
608 280 CONTINUE
609 290 CONTINUE
610 CALL dgemm( 'T', 'N', nrp1, nrhs, nrp1, one, vt( nrf, 1 ), ldu,
611 $ rwork( 1+nrp1*nrhs*2 ), nrp1, zero,
612 $ rwork( 1+nrp1*nrhs ), nrp1 )
613 jreal = 0
614 jimag = nrp1*nrhs
615 DO 310 jcol = 1, nrhs
616 DO 300 jrow = nrf, nrf + nrp1 - 1
617 jreal = jreal + 1
618 jimag = jimag + 1
619 bx( jrow, jcol ) = dcmplx( rwork( jreal ),
620 $ rwork( jimag ) )
621 300 CONTINUE
622 310 CONTINUE
623*
624 320 CONTINUE
625*
626 330 CONTINUE
627*
628 RETURN
629*
630* End of ZLALSA
631*
632 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zcopy(n, zx, incx, zy, incy)
ZCOPY
Definition zcopy.f:81
subroutine dgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
DGEMM
Definition dgemm.f:188
subroutine zlals0(icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm, givptr, givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z, k, c, s, rwork, info)
ZLALS0 applies back multiplying factors in solving the least squares problem using divide and conquer...
Definition zlals0.f:270
subroutine zlalsa(icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx, u, ldu, vt, k, difl, difr, z, poles, givptr, givcol, ldgcol, perm, givnum, c, s, rwork, iwork, info)
ZLALSA computes the SVD of the coefficient matrix in compact form. Used by sgelsd.
Definition zlalsa.f:267
subroutine dlasdt(n, lvl, nd, inode, ndiml, ndimr, msub)
DLASDT creates a tree of subproblems for bidiagonal divide and conquer. Used by sbdsdc.
Definition dlasdt.f:105