LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ clatrz()

subroutine clatrz ( integer m,
integer n,
integer l,
complex, dimension( lda, * ) a,
integer lda,
complex, dimension( * ) tau,
complex, dimension( * ) work )

CLATRZ factors an upper trapezoidal matrix by means of unitary transformations.

Download CLATRZ + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CLATRZ factors the M-by-(M+L) complex upper trapezoidal matrix
!> [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R  0 ) * Z by means
!> of unitary transformations, where  Z is an (M+L)-by-(M+L) unitary
!> matrix and, R and A1 are M-by-M upper triangular matrices.
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 
[in]L
!>          L is INTEGER
!>          The number of columns of the matrix A containing the
!>          meaningful part of the Householder vectors. N-M >= L >= 0.
!> 
[in,out]A
!>          A is COMPLEX array, dimension (LDA,N)
!>          On entry, the leading M-by-N upper trapezoidal part of the
!>          array A must contain the matrix to be factorized.
!>          On exit, the leading M-by-M upper triangular part of A
!>          contains the upper triangular matrix R, and elements N-L+1 to
!>          N of the first M rows of A, with the array TAU, represent the
!>          unitary matrix Z as a product of M elementary reflectors.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 
[out]TAU
!>          TAU is COMPLEX array, dimension (M)
!>          The scalar factors of the elementary reflectors.
!> 
[out]WORK
!>          WORK is COMPLEX array, dimension (M)
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
Further Details:
!>
!>  The factorization is obtained by Householder's method.  The kth
!>  transformation matrix, Z( k ), which is used to introduce zeros into
!>  the ( m - k + 1 )th row of A, is given in the form
!>
!>     Z( k ) = ( I     0   ),
!>              ( 0  T( k ) )
!>
!>  where
!>
!>     T( k ) = I - tau*u( k )*u( k )**H,   u( k ) = (   1    ),
!>                                                 (   0    )
!>                                                 ( z( k ) )
!>
!>  tau is a scalar and z( k ) is an l element vector. tau and z( k )
!>  are chosen to annihilate the elements of the kth row of A2.
!>
!>  The scalar tau is returned in the kth element of TAU and the vector
!>  u( k ) in the kth row of A2, such that the elements of z( k ) are
!>  in  a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in
!>  the upper triangular part of A1.
!>
!>  Z is given by
!>
!>     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).
!> 

Definition at line 137 of file clatrz.f.

138*
139* -- LAPACK computational routine --
140* -- LAPACK is a software package provided by Univ. of Tennessee, --
141* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
142*
143* .. Scalar Arguments ..
144 INTEGER L, LDA, M, N
145* ..
146* .. Array Arguments ..
147 COMPLEX A( LDA, * ), TAU( * ), WORK( * )
148* ..
149*
150* =====================================================================
151*
152* .. Parameters ..
153 COMPLEX ZERO
154 parameter( zero = ( 0.0e+0, 0.0e+0 ) )
155* ..
156* .. Local Scalars ..
157 INTEGER I
158 COMPLEX ALPHA
159* ..
160* .. External Subroutines ..
161 EXTERNAL clacgv, clarfg, clarz
162* ..
163* .. Intrinsic Functions ..
164 INTRINSIC conjg
165* ..
166* .. Executable Statements ..
167*
168* Quick return if possible
169*
170 IF( m.EQ.0 ) THEN
171 RETURN
172 ELSE IF( m.EQ.n ) THEN
173 DO 10 i = 1, n
174 tau( i ) = zero
175 10 CONTINUE
176 RETURN
177 END IF
178*
179 DO 20 i = m, 1, -1
180*
181* Generate elementary reflector H(i) to annihilate
182* [ A(i,i) A(i,n-l+1:n) ]
183*
184 CALL clacgv( l, a( i, n-l+1 ), lda )
185 alpha = conjg( a( i, i ) )
186 CALL clarfg( l+1, alpha, a( i, n-l+1 ), lda, tau( i ) )
187 tau( i ) = conjg( tau( i ) )
188*
189* Apply H(i) to A(1:i-1,i:n) from the right
190*
191 CALL clarz( 'Right', i-1, n-i+1, l, a( i, n-l+1 ), lda,
192 $ conjg( tau( i ) ), a( 1, i ), lda, work )
193 a( i, i ) = conjg( alpha )
194*
195 20 CONTINUE
196*
197 RETURN
198*
199* End of CLATRZ
200*
subroutine clacgv(n, x, incx)
CLACGV conjugates a complex vector.
Definition clacgv.f:72
subroutine clarfg(n, alpha, x, incx, tau)
CLARFG generates an elementary reflector (Householder matrix).
Definition clarfg.f:104
subroutine clarz(side, m, n, l, v, incv, tau, c, ldc, work)
CLARZ applies an elementary reflector (as returned by stzrzf) to a general matrix.
Definition clarz.f:145
Here is the call graph for this function:
Here is the caller graph for this function: