LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
clarz.f
Go to the documentation of this file.
1*> \brief \b CLARZ applies an elementary reflector (as returned by stzrzf) to a general matrix.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CLARZ + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarz.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarz.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarz.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE CLARZ( SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK )
22*
23* .. Scalar Arguments ..
24* CHARACTER SIDE
25* INTEGER INCV, L, LDC, M, N
26* COMPLEX TAU
27* ..
28* .. Array Arguments ..
29* COMPLEX C( LDC, * ), V( * ), WORK( * )
30* ..
31*
32*
33*> \par Purpose:
34* =============
35*>
36*> \verbatim
37*>
38*> CLARZ applies a complex elementary reflector H to a complex
39*> M-by-N matrix C, from either the left or the right. H is represented
40*> in the form
41*>
42*> H = I - tau * v * v**H
43*>
44*> where tau is a complex scalar and v is a complex vector.
45*>
46*> If tau = 0, then H is taken to be the unit matrix.
47*>
48*> To apply H**H (the conjugate transpose of H), supply conjg(tau) instead
49*> tau.
50*>
51*> H is a product of k elementary reflectors as returned by CTZRZF.
52*> \endverbatim
53*
54* Arguments:
55* ==========
56*
57*> \param[in] SIDE
58*> \verbatim
59*> SIDE is CHARACTER*1
60*> = 'L': form H * C
61*> = 'R': form C * H
62*> \endverbatim
63*>
64*> \param[in] M
65*> \verbatim
66*> M is INTEGER
67*> The number of rows of the matrix C.
68*> \endverbatim
69*>
70*> \param[in] N
71*> \verbatim
72*> N is INTEGER
73*> The number of columns of the matrix C.
74*> \endverbatim
75*>
76*> \param[in] L
77*> \verbatim
78*> L is INTEGER
79*> The number of entries of the vector V containing
80*> the meaningful part of the Householder vectors.
81*> If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
82*> \endverbatim
83*>
84*> \param[in] V
85*> \verbatim
86*> V is COMPLEX array, dimension (1+(L-1)*abs(INCV))
87*> The vector v in the representation of H as returned by
88*> CTZRZF. V is not used if TAU = 0.
89*> \endverbatim
90*>
91*> \param[in] INCV
92*> \verbatim
93*> INCV is INTEGER
94*> The increment between elements of v. INCV <> 0.
95*> \endverbatim
96*>
97*> \param[in] TAU
98*> \verbatim
99*> TAU is COMPLEX
100*> The value tau in the representation of H.
101*> \endverbatim
102*>
103*> \param[in,out] C
104*> \verbatim
105*> C is COMPLEX array, dimension (LDC,N)
106*> On entry, the M-by-N matrix C.
107*> On exit, C is overwritten by the matrix H * C if SIDE = 'L',
108*> or C * H if SIDE = 'R'.
109*> \endverbatim
110*>
111*> \param[in] LDC
112*> \verbatim
113*> LDC is INTEGER
114*> The leading dimension of the array C. LDC >= max(1,M).
115*> \endverbatim
116*>
117*> \param[out] WORK
118*> \verbatim
119*> WORK is COMPLEX array, dimension
120*> (N) if SIDE = 'L'
121*> or (M) if SIDE = 'R'
122*> \endverbatim
123*
124* Authors:
125* ========
126*
127*> \author Univ. of Tennessee
128*> \author Univ. of California Berkeley
129*> \author Univ. of Colorado Denver
130*> \author NAG Ltd.
131*
132*> \ingroup larz
133*
134*> \par Contributors:
135* ==================
136*>
137*> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
138*
139*> \par Further Details:
140* =====================
141*>
142*> \verbatim
143*> \endverbatim
144*>
145* =====================================================================
146 SUBROUTINE clarz( SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK )
147*
148* -- LAPACK computational routine --
149* -- LAPACK is a software package provided by Univ. of Tennessee, --
150* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
151*
152* .. Scalar Arguments ..
153 CHARACTER SIDE
154 INTEGER INCV, L, LDC, M, N
155 COMPLEX TAU
156* ..
157* .. Array Arguments ..
158 COMPLEX C( LDC, * ), V( * ), WORK( * )
159* ..
160*
161* =====================================================================
162*
163* .. Parameters ..
164 COMPLEX ONE, ZERO
165 parameter( one = ( 1.0e+0, 0.0e+0 ),
166 $ zero = ( 0.0e+0, 0.0e+0 ) )
167* ..
168* .. External Subroutines ..
169 EXTERNAL caxpy, ccopy, cgemv, cgerc, cgeru, clacgv
170* ..
171* .. External Functions ..
172 LOGICAL LSAME
173 EXTERNAL lsame
174* ..
175* .. Executable Statements ..
176*
177 IF( lsame( side, 'L' ) ) THEN
178*
179* Form H * C
180*
181 IF( tau.NE.zero ) THEN
182*
183* w( 1:n ) = conjg( C( 1, 1:n ) )
184*
185 CALL ccopy( n, c, ldc, work, 1 )
186 CALL clacgv( n, work, 1 )
187*
188* w( 1:n ) = conjg( w( 1:n ) + C( m-l+1:m, 1:n )**H * v( 1:l ) )
189*
190 CALL cgemv( 'Conjugate transpose', l, n, one, c( m-l+1, 1 ),
191 $ ldc, v, incv, one, work, 1 )
192 CALL clacgv( n, work, 1 )
193*
194* C( 1, 1:n ) = C( 1, 1:n ) - tau * w( 1:n )
195*
196 CALL caxpy( n, -tau, work, 1, c, ldc )
197*
198* C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ...
199* tau * v( 1:l ) * w( 1:n )**H
200*
201 CALL cgeru( l, n, -tau, v, incv, work, 1, c( m-l+1, 1 ),
202 $ ldc )
203 END IF
204*
205 ELSE
206*
207* Form C * H
208*
209 IF( tau.NE.zero ) THEN
210*
211* w( 1:m ) = C( 1:m, 1 )
212*
213 CALL ccopy( m, c, 1, work, 1 )
214*
215* w( 1:m ) = w( 1:m ) + C( 1:m, n-l+1:n, 1:n ) * v( 1:l )
216*
217 CALL cgemv( 'No transpose', m, l, one, c( 1, n-l+1 ), ldc,
218 $ v, incv, one, work, 1 )
219*
220* C( 1:m, 1 ) = C( 1:m, 1 ) - tau * w( 1:m )
221*
222 CALL caxpy( m, -tau, work, 1, c, 1 )
223*
224* C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ...
225* tau * w( 1:m ) * v( 1:l )**H
226*
227 CALL cgerc( m, l, -tau, work, 1, v, incv, c( 1, n-l+1 ),
228 $ ldc )
229*
230 END IF
231*
232 END IF
233*
234 RETURN
235*
236* End of CLARZ
237*
238 END
subroutine caxpy(n, ca, cx, incx, cy, incy)
CAXPY
Definition caxpy.f:88
subroutine ccopy(n, cx, incx, cy, incy)
CCOPY
Definition ccopy.f:81
subroutine cgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
CGEMV
Definition cgemv.f:160
subroutine cgerc(m, n, alpha, x, incx, y, incy, a, lda)
CGERC
Definition cgerc.f:130
subroutine cgeru(m, n, alpha, x, incx, y, incy, a, lda)
CGERU
Definition cgeru.f:130
subroutine clacgv(n, x, incx)
CLACGV conjugates a complex vector.
Definition clacgv.f:74
subroutine clarz(side, m, n, l, v, incv, tau, c, ldc, work)
CLARZ applies an elementary reflector (as returned by stzrzf) to a general matrix.
Definition clarz.f:147