LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ ctgsna()

subroutine ctgsna ( character  job,
character  howmny,
logical, dimension( * )  select,
integer  n,
complex, dimension( lda, * )  a,
integer  lda,
complex, dimension( ldb, * )  b,
integer  ldb,
complex, dimension( ldvl, * )  vl,
integer  ldvl,
complex, dimension( ldvr, * )  vr,
integer  ldvr,
real, dimension( * )  s,
real, dimension( * )  dif,
integer  mm,
integer  m,
complex, dimension( * )  work,
integer  lwork,
integer, dimension( * )  iwork,
integer  info 
)

CTGSNA

Download CTGSNA + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 CTGSNA estimates reciprocal condition numbers for specified
 eigenvalues and/or eigenvectors of a matrix pair (A, B).

 (A, B) must be in generalized Schur canonical form, that is, A and
 B are both upper triangular.
Parameters
[in]JOB
          JOB is CHARACTER*1
          Specifies whether condition numbers are required for
          eigenvalues (S) or eigenvectors (DIF):
          = 'E': for eigenvalues only (S);
          = 'V': for eigenvectors only (DIF);
          = 'B': for both eigenvalues and eigenvectors (S and DIF).
[in]HOWMNY
          HOWMNY is CHARACTER*1
          = 'A': compute condition numbers for all eigenpairs;
          = 'S': compute condition numbers for selected eigenpairs
                 specified by the array SELECT.
[in]SELECT
          SELECT is LOGICAL array, dimension (N)
          If HOWMNY = 'S', SELECT specifies the eigenpairs for which
          condition numbers are required. To select condition numbers
          for the corresponding j-th eigenvalue and/or eigenvector,
          SELECT(j) must be set to .TRUE..
          If HOWMNY = 'A', SELECT is not referenced.
[in]N
          N is INTEGER
          The order of the square matrix pair (A, B). N >= 0.
[in]A
          A is COMPLEX array, dimension (LDA,N)
          The upper triangular matrix A in the pair (A,B).
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,N).
[in]B
          B is COMPLEX array, dimension (LDB,N)
          The upper triangular matrix B in the pair (A, B).
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,N).
[in]VL
          VL is COMPLEX array, dimension (LDVL,M)
          IF JOB = 'E' or 'B', VL must contain left eigenvectors of
          (A, B), corresponding to the eigenpairs specified by HOWMNY
          and SELECT.  The eigenvectors must be stored in consecutive
          columns of VL, as returned by CTGEVC.
          If JOB = 'V', VL is not referenced.
[in]LDVL
          LDVL is INTEGER
          The leading dimension of the array VL. LDVL >= 1; and
          If JOB = 'E' or 'B', LDVL >= N.
[in]VR
          VR is COMPLEX array, dimension (LDVR,M)
          IF JOB = 'E' or 'B', VR must contain right eigenvectors of
          (A, B), corresponding to the eigenpairs specified by HOWMNY
          and SELECT.  The eigenvectors must be stored in consecutive
          columns of VR, as returned by CTGEVC.
          If JOB = 'V', VR is not referenced.
[in]LDVR
          LDVR is INTEGER
          The leading dimension of the array VR. LDVR >= 1;
          If JOB = 'E' or 'B', LDVR >= N.
[out]S
          S is REAL array, dimension (MM)
          If JOB = 'E' or 'B', the reciprocal condition numbers of the
          selected eigenvalues, stored in consecutive elements of the
          array.
          If JOB = 'V', S is not referenced.
[out]DIF
          DIF is REAL array, dimension (MM)
          If JOB = 'V' or 'B', the estimated reciprocal condition
          numbers of the selected eigenvectors, stored in consecutive
          elements of the array.
          If the eigenvalues cannot be reordered to compute DIF(j),
          DIF(j) is set to 0; this can only occur when the true value
          would be very small anyway.
          For each eigenvalue/vector specified by SELECT, DIF stores
          a Frobenius norm-based estimate of Difl.
          If JOB = 'E', DIF is not referenced.
[in]MM
          MM is INTEGER
          The number of elements in the arrays S and DIF. MM >= M.
[out]M
          M is INTEGER
          The number of elements of the arrays S and DIF used to store
          the specified condition numbers; for each selected eigenvalue
          one element is used. If HOWMNY = 'A', M is set to N.
[out]WORK
          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK. LWORK >= max(1,N).
          If JOB = 'V' or 'B', LWORK >= max(1,2*N*N).
[out]IWORK
          IWORK is INTEGER array, dimension (N+2)
          If JOB = 'E', IWORK is not referenced.
[out]INFO
          INFO is INTEGER
          = 0: Successful exit
          < 0: If INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
  The reciprocal of the condition number of the i-th generalized
  eigenvalue w = (a, b) is defined as

          S(I) = (|v**HAu|**2 + |v**HBu|**2)**(1/2) / (norm(u)*norm(v))

  where u and v are the right and left eigenvectors of (A, B)
  corresponding to w; |z| denotes the absolute value of the complex
  number, and norm(u) denotes the 2-norm of the vector u. The pair
  (a, b) corresponds to an eigenvalue w = a/b (= v**HAu/v**HBu) of the
  matrix pair (A, B). If both a and b equal zero, then (A,B) is
  singular and S(I) = -1 is returned.

  An approximate error bound on the chordal distance between the i-th
  computed generalized eigenvalue w and the corresponding exact
  eigenvalue lambda is

          chord(w, lambda) <=   EPS * norm(A, B) / S(I),

  where EPS is the machine precision.

  The reciprocal of the condition number of the right eigenvector u
  and left eigenvector v corresponding to the generalized eigenvalue w
  is defined as follows. Suppose

                   (A, B) = ( a   *  ) ( b  *  )  1
                            ( 0  A22 ),( 0 B22 )  n-1
                              1  n-1     1 n-1

  Then the reciprocal condition number DIF(I) is

          Difl[(a, b), (A22, B22)]  = sigma-min( Zl )

  where sigma-min(Zl) denotes the smallest singular value of

         Zl = [ kron(a, In-1) -kron(1, A22) ]
              [ kron(b, In-1) -kron(1, B22) ].

  Here In-1 is the identity matrix of size n-1 and X**H is the conjugate
  transpose of X. kron(X, Y) is the Kronecker product between the
  matrices X and Y.

  We approximate the smallest singular value of Zl with an upper
  bound. This is done by CLATDF.

  An approximate error bound for a computed eigenvector VL(i) or
  VR(i) is given by

                      EPS * norm(A, B) / DIF(i).

  See ref. [2-3] for more details and further references.
Contributors:
Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.
References:
  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.

  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
      Estimation: Theory, Algorithms and Software, Report
      UMINF - 94.04, Department of Computing Science, Umea University,
      S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
      To appear in Numerical Algorithms, 1996.

  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
      for Solving the Generalized Sylvester Equation and Estimating the
      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
      Department of Computing Science, Umea University, S-901 87 Umea,
      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
      Note 75.
      To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996.

Definition at line 308 of file ctgsna.f.

311*
312* -- LAPACK computational routine --
313* -- LAPACK is a software package provided by Univ. of Tennessee, --
314* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
315*
316* .. Scalar Arguments ..
317 CHARACTER HOWMNY, JOB
318 INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N
319* ..
320* .. Array Arguments ..
321 LOGICAL SELECT( * )
322 INTEGER IWORK( * )
323 REAL DIF( * ), S( * )
324 COMPLEX A( LDA, * ), B( LDB, * ), VL( LDVL, * ),
325 $ VR( LDVR, * ), WORK( * )
326* ..
327*
328* =====================================================================
329*
330* .. Parameters ..
331 REAL ZERO, ONE
332 INTEGER IDIFJB
333 parameter( zero = 0.0e+0, one = 1.0e+0, idifjb = 3 )
334* ..
335* .. Local Scalars ..
336 LOGICAL LQUERY, SOMCON, WANTBH, WANTDF, WANTS
337 INTEGER I, IERR, IFST, ILST, K, KS, LWMIN, N1, N2
338 REAL BIGNUM, COND, EPS, LNRM, RNRM, SCALE, SMLNUM
339 COMPLEX YHAX, YHBX
340* ..
341* .. Local Arrays ..
342 COMPLEX DUMMY( 1 ), DUMMY1( 1 )
343* ..
344* .. External Functions ..
345 LOGICAL LSAME
346 REAL SCNRM2, SLAMCH, SLAPY2, SROUNDUP_LWORK
347 COMPLEX CDOTC
349 $ cdotc
350* ..
351* .. External Subroutines ..
352 EXTERNAL cgemv, clacpy, ctgexc, ctgsyl, xerbla
353* ..
354* .. Intrinsic Functions ..
355 INTRINSIC abs, cmplx, max
356* ..
357* .. Executable Statements ..
358*
359* Decode and test the input parameters
360*
361 wantbh = lsame( job, 'B' )
362 wants = lsame( job, 'E' ) .OR. wantbh
363 wantdf = lsame( job, 'V' ) .OR. wantbh
364*
365 somcon = lsame( howmny, 'S' )
366*
367 info = 0
368 lquery = ( lwork.EQ.-1 )
369*
370 IF( .NOT.wants .AND. .NOT.wantdf ) THEN
371 info = -1
372 ELSE IF( .NOT.lsame( howmny, 'A' ) .AND. .NOT.somcon ) THEN
373 info = -2
374 ELSE IF( n.LT.0 ) THEN
375 info = -4
376 ELSE IF( lda.LT.max( 1, n ) ) THEN
377 info = -6
378 ELSE IF( ldb.LT.max( 1, n ) ) THEN
379 info = -8
380 ELSE IF( wants .AND. ldvl.LT.n ) THEN
381 info = -10
382 ELSE IF( wants .AND. ldvr.LT.n ) THEN
383 info = -12
384 ELSE
385*
386* Set M to the number of eigenpairs for which condition numbers
387* are required, and test MM.
388*
389 IF( somcon ) THEN
390 m = 0
391 DO 10 k = 1, n
392 IF( SELECT( k ) )
393 $ m = m + 1
394 10 CONTINUE
395 ELSE
396 m = n
397 END IF
398*
399 IF( n.EQ.0 ) THEN
400 lwmin = 1
401 ELSE IF( lsame( job, 'V' ) .OR. lsame( job, 'B' ) ) THEN
402 lwmin = 2*n*n
403 ELSE
404 lwmin = n
405 END IF
406 work( 1 ) = sroundup_lwork(lwmin)
407*
408 IF( mm.LT.m ) THEN
409 info = -15
410 ELSE IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
411 info = -18
412 END IF
413 END IF
414*
415 IF( info.NE.0 ) THEN
416 CALL xerbla( 'CTGSNA', -info )
417 RETURN
418 ELSE IF( lquery ) THEN
419 RETURN
420 END IF
421*
422* Quick return if possible
423*
424 IF( n.EQ.0 )
425 $ RETURN
426*
427* Get machine constants
428*
429 eps = slamch( 'P' )
430 smlnum = slamch( 'S' ) / eps
431 bignum = one / smlnum
432 ks = 0
433 DO 20 k = 1, n
434*
435* Determine whether condition numbers are required for the k-th
436* eigenpair.
437*
438 IF( somcon ) THEN
439 IF( .NOT.SELECT( k ) )
440 $ GO TO 20
441 END IF
442*
443 ks = ks + 1
444*
445 IF( wants ) THEN
446*
447* Compute the reciprocal condition number of the k-th
448* eigenvalue.
449*
450 rnrm = scnrm2( n, vr( 1, ks ), 1 )
451 lnrm = scnrm2( n, vl( 1, ks ), 1 )
452 CALL cgemv( 'N', n, n, cmplx( one, zero ), a, lda,
453 $ vr( 1, ks ), 1, cmplx( zero, zero ), work, 1 )
454 yhax = cdotc( n, work, 1, vl( 1, ks ), 1 )
455 CALL cgemv( 'N', n, n, cmplx( one, zero ), b, ldb,
456 $ vr( 1, ks ), 1, cmplx( zero, zero ), work, 1 )
457 yhbx = cdotc( n, work, 1, vl( 1, ks ), 1 )
458 cond = slapy2( abs( yhax ), abs( yhbx ) )
459 IF( cond.EQ.zero ) THEN
460 s( ks ) = -one
461 ELSE
462 s( ks ) = cond / ( rnrm*lnrm )
463 END IF
464 END IF
465*
466 IF( wantdf ) THEN
467 IF( n.EQ.1 ) THEN
468 dif( ks ) = slapy2( abs( a( 1, 1 ) ), abs( b( 1, 1 ) ) )
469 ELSE
470*
471* Estimate the reciprocal condition number of the k-th
472* eigenvectors.
473*
474* Copy the matrix (A, B) to the array WORK and move the
475* (k,k)th pair to the (1,1) position.
476*
477 CALL clacpy( 'Full', n, n, a, lda, work, n )
478 CALL clacpy( 'Full', n, n, b, ldb, work( n*n+1 ), n )
479 ifst = k
480 ilst = 1
481*
482 CALL ctgexc( .false., .false., n, work, n, work( n*n+1 ),
483 $ n, dummy, 1, dummy1, 1, ifst, ilst, ierr )
484*
485 IF( ierr.GT.0 ) THEN
486*
487* Ill-conditioned problem - swap rejected.
488*
489 dif( ks ) = zero
490 ELSE
491*
492* Reordering successful, solve generalized Sylvester
493* equation for R and L,
494* A22 * R - L * A11 = A12
495* B22 * R - L * B11 = B12,
496* and compute estimate of Difl[(A11,B11), (A22, B22)].
497*
498 n1 = 1
499 n2 = n - n1
500 i = n*n + 1
501 CALL ctgsyl( 'N', idifjb, n2, n1, work( n*n1+n1+1 ),
502 $ n, work, n, work( n1+1 ), n,
503 $ work( n*n1+n1+i ), n, work( i ), n,
504 $ work( n1+i ), n, scale, dif( ks ), dummy,
505 $ 1, iwork, ierr )
506 END IF
507 END IF
508 END IF
509*
510 20 CONTINUE
511 work( 1 ) = sroundup_lwork(lwmin)
512 RETURN
513*
514* End of CTGSNA
515*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
complex function cdotc(n, cx, incx, cy, incy)
CDOTC
Definition cdotc.f:83
subroutine cgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
CGEMV
Definition cgemv.f:160
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:103
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function slapy2(x, y)
SLAPY2 returns sqrt(x2+y2).
Definition slapy2.f:63
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
real(wp) function scnrm2(n, x, incx)
SCNRM2
Definition scnrm2.f90:90
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
subroutine ctgexc(wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, ifst, ilst, info)
CTGEXC
Definition ctgexc.f:200
subroutine ctgsyl(trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf, scale, dif, work, lwork, iwork, info)
CTGSYL
Definition ctgsyl.f:295
Here is the call graph for this function:
Here is the caller graph for this function: