LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cgetf2.f
Go to the documentation of this file.
1*> \brief \b CGETF2 computes the LU factorization of a general m-by-n matrix using partial pivoting with row interchanges (unblocked algorithm).
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CGETF2 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgetf2.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgetf2.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgetf2.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE CGETF2( M, N, A, LDA, IPIV, INFO )
22*
23* .. Scalar Arguments ..
24* INTEGER INFO, LDA, M, N
25* ..
26* .. Array Arguments ..
27* INTEGER IPIV( * )
28* COMPLEX A( LDA, * )
29* ..
30*
31*
32*> \par Purpose:
33* =============
34*>
35*> \verbatim
36*>
37*> CGETF2 computes an LU factorization of a general m-by-n matrix A
38*> using partial pivoting with row interchanges.
39*>
40*> The factorization has the form
41*> A = P * L * U
42*> where P is a permutation matrix, L is lower triangular with unit
43*> diagonal elements (lower trapezoidal if m > n), and U is upper
44*> triangular (upper trapezoidal if m < n).
45*>
46*> This is the right-looking Level 2 BLAS version of the algorithm.
47*> \endverbatim
48*
49* Arguments:
50* ==========
51*
52*> \param[in] M
53*> \verbatim
54*> M is INTEGER
55*> The number of rows of the matrix A. M >= 0.
56*> \endverbatim
57*>
58*> \param[in] N
59*> \verbatim
60*> N is INTEGER
61*> The number of columns of the matrix A. N >= 0.
62*> \endverbatim
63*>
64*> \param[in,out] A
65*> \verbatim
66*> A is COMPLEX array, dimension (LDA,N)
67*> On entry, the m by n matrix to be factored.
68*> On exit, the factors L and U from the factorization
69*> A = P*L*U; the unit diagonal elements of L are not stored.
70*> \endverbatim
71*>
72*> \param[in] LDA
73*> \verbatim
74*> LDA is INTEGER
75*> The leading dimension of the array A. LDA >= max(1,M).
76*> \endverbatim
77*>
78*> \param[out] IPIV
79*> \verbatim
80*> IPIV is INTEGER array, dimension (min(M,N))
81*> The pivot indices; for 1 <= i <= min(M,N), row i of the
82*> matrix was interchanged with row IPIV(i).
83*> \endverbatim
84*>
85*> \param[out] INFO
86*> \verbatim
87*> INFO is INTEGER
88*> = 0: successful exit
89*> < 0: if INFO = -k, the k-th argument had an illegal value
90*> > 0: if INFO = k, U(k,k) is exactly zero. The factorization
91*> has been completed, but the factor U is exactly
92*> singular, and division by zero will occur if it is used
93*> to solve a system of equations.
94*> \endverbatim
95*
96* Authors:
97* ========
98*
99*> \author Univ. of Tennessee
100*> \author Univ. of California Berkeley
101*> \author Univ. of Colorado Denver
102*> \author NAG Ltd.
103*
104*> \ingroup getf2
105*
106* =====================================================================
107 SUBROUTINE cgetf2( M, N, A, LDA, IPIV, INFO )
108*
109* -- LAPACK computational routine --
110* -- LAPACK is a software package provided by Univ. of Tennessee, --
111* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
112*
113* .. Scalar Arguments ..
114 INTEGER INFO, LDA, M, N
115* ..
116* .. Array Arguments ..
117 INTEGER IPIV( * )
118 COMPLEX A( LDA, * )
119* ..
120*
121* =====================================================================
122*
123* .. Parameters ..
124 COMPLEX ONE, ZERO
125 parameter( one = ( 1.0e+0, 0.0e+0 ),
126 $ zero = ( 0.0e+0, 0.0e+0 ) )
127* ..
128* .. Local Scalars ..
129 INTEGER J, JP
130* ..
131* .. External Functions ..
132 INTEGER ICAMAX
133 EXTERNAL icamax
134* ..
135* .. External Subroutines ..
136 EXTERNAL cgeru, crscl, cswap, xerbla
137* ..
138* .. Intrinsic Functions ..
139 INTRINSIC max, min
140* ..
141* .. Executable Statements ..
142*
143* Test the input parameters.
144*
145 info = 0
146 IF( m.LT.0 ) THEN
147 info = -1
148 ELSE IF( n.LT.0 ) THEN
149 info = -2
150 ELSE IF( lda.LT.max( 1, m ) ) THEN
151 info = -4
152 END IF
153 IF( info.NE.0 ) THEN
154 CALL xerbla( 'CGETF2', -info )
155 RETURN
156 END IF
157*
158* Quick return if possible
159*
160 IF( m.EQ.0 .OR. n.EQ.0 )
161 $ RETURN
162*
163 DO 10 j = 1, min( m, n )
164*
165* Find pivot and test for singularity.
166*
167 jp = j - 1 + icamax( m-j+1, a( j, j ), 1 )
168 ipiv( j ) = jp
169 IF( a( jp, j ).NE.zero ) THEN
170*
171* Apply the interchange to columns 1:N.
172*
173 IF( jp.NE.j )
174 $ CALL cswap( n, a( j, 1 ), lda, a( jp, 1 ), lda )
175*
176* Compute elements J+1:M of J-th column.
177*
178 IF( j.LT.m )
179 $ CALL crscl( m-j, a( j, j ), a( j+1, j ), 1 )
180*
181 ELSE IF( info.EQ.0 ) THEN
182*
183 info = j
184 END IF
185*
186 IF( j.LT.min( m, n ) ) THEN
187*
188* Update trailing submatrix.
189*
190 CALL cgeru( m-j, n-j, -one, a( j+1, j ), 1, a( j, j+1 ),
191 $ lda, a( j+1, j+1 ), lda )
192 END IF
193 10 CONTINUE
194 RETURN
195*
196* End of CGETF2
197*
198 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine crscl(n, a, x, incx)
CRSCL multiplies a vector by the reciprocal of a real scalar.
Definition crscl.f:84
subroutine cgeru(m, n, alpha, x, incx, y, incy, a, lda)
CGERU
Definition cgeru.f:130
subroutine cgetf2(m, n, a, lda, ipiv, info)
CGETF2 computes the LU factorization of a general m-by-n matrix using partial pivoting with row inter...
Definition cgetf2.f:108
subroutine cswap(n, cx, incx, cy, incy)
CSWAP
Definition cswap.f:81