LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ crscl()

subroutine crscl ( integer n,
complex a,
complex, dimension( * ) x,
integer incx )

CRSCL multiplies a vector by the reciprocal of a real scalar.

Download CRSCL + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CRSCL multiplies an n-element complex vector x by the complex scalar
!> 1/a.  This is done without overflow or underflow as long as
!> the final result x/a does not overflow or underflow.
!> 
Parameters
[in]N
!>          N is INTEGER
!>          The number of components of the vector x.
!> 
[in]A
!>          A is COMPLEX
!>          The scalar a which is used to divide each component of x.
!>          A must not be 0, or the subroutine will divide by zero.
!> 
[in,out]X
!>          X is COMPLEX array, dimension
!>                         (1+(N-1)*abs(INCX))
!>          The n-element vector x.
!> 
[in]INCX
!>          INCX is INTEGER
!>          The increment between successive values of the vector X.
!>          > 0:  X(1) = X(1) and X(1+(i-1)*INCX) = x(i),     1< i<= n
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 81 of file crscl.f.

82*
83* -- LAPACK auxiliary routine --
84* -- LAPACK is a software package provided by Univ. of Tennessee, --
85* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
86*
87* .. Scalar Arguments ..
88 INTEGER INCX, N
89 COMPLEX A
90* ..
91* .. Array Arguments ..
92 COMPLEX X( * )
93* ..
94*
95* =====================================================================
96*
97* .. Parameters ..
98 REAL ZERO, ONE
99 parameter( zero = 0.0e+0, one = 1.0e+0 )
100* ..
101* .. Local Scalars ..
102 REAL SAFMAX, SAFMIN, OV, AR, AI, ABSR, ABSI, UR
103 % , UI
104* ..
105* .. External Functions ..
106 REAL SLAMCH
107 COMPLEX CLADIV
108 EXTERNAL slamch, cladiv
109* ..
110* .. External Subroutines ..
111 EXTERNAL cscal, csscal, csrscl
112* ..
113* .. Intrinsic Functions ..
114 INTRINSIC abs
115* ..
116* .. Executable Statements ..
117*
118* Quick return if possible
119*
120 IF( n.LE.0 )
121 $ RETURN
122*
123* Get machine parameters
124*
125 safmin = slamch( 'S' )
126 safmax = one / safmin
127 ov = slamch( 'O' )
128*
129* Initialize constants related to A.
130*
131 ar = real( a )
132 ai = aimag( a )
133 absr = abs( ar )
134 absi = abs( ai )
135*
136 IF( ai.EQ.zero ) THEN
137* If alpha is real, then we can use csrscl
138 CALL csrscl( n, ar, x, incx )
139*
140 ELSE IF( ar.EQ.zero ) THEN
141* If alpha has a zero real part, then we follow the same rules as if
142* alpha were real.
143 IF( absi.GT.safmax ) THEN
144 CALL csscal( n, safmin, x, incx )
145 CALL cscal( n, cmplx( zero, -safmax / ai ), x, incx )
146 ELSE IF( absi.LT.safmin ) THEN
147 CALL cscal( n, cmplx( zero, -safmin / ai ), x, incx )
148 CALL csscal( n, safmax, x, incx )
149 ELSE
150 CALL cscal( n, cmplx( zero, -one / ai ), x, incx )
151 END IF
152*
153 ELSE
154* The following numbers can be computed.
155* They are the inverse of the real and imaginary parts of 1/alpha.
156* Note that a and b are always different from zero.
157* NaNs are only possible if either:
158* 1. alphaR or alphaI is NaN.
159* 2. alphaR and alphaI are both infinite, in which case it makes sense
160* to propagate a NaN.
161 ur = ar + ai * ( ai / ar )
162 ui = ai + ar * ( ar / ai )
163*
164 IF( (abs( ur ).LT.safmin).OR.(abs( ui ).LT.safmin) ) THEN
165* This means that both alphaR and alphaI are very small.
166 CALL cscal( n, cmplx( safmin / ur, -safmin / ui ), x,
167 $ incx )
168 CALL csscal( n, safmax, x, incx )
169 ELSE IF( (abs( ur ).GT.safmax).OR.(abs( ui ).GT.safmax) ) THEN
170 IF( (absr.GT.ov).OR.(absi.GT.ov) ) THEN
171* This means that a and b are both Inf. No need for scaling.
172 CALL cscal( n, cmplx( one / ur, -one / ui ), x, incx )
173 ELSE
174 CALL csscal( n, safmin, x, incx )
175 IF( (abs( ur ).GT.ov).OR.(abs( ui ).GT.ov) ) THEN
176* Infs were generated. We do proper scaling to avoid them.
177 IF( absr.GE.absi ) THEN
178* ABS( UR ) <= ABS( UI )
179 ur = (safmin * ar) + safmin * (ai * ( ai / ar ))
180 ui = (safmin * ai) + ar * ( (safmin * ar) / ai )
181 ELSE
182* ABS( UR ) > ABS( UI )
183 ur = (safmin * ar) + ai * ( (safmin * ai) / ar )
184 ui = (safmin * ai) + safmin * (ar * ( ar / ai ))
185 END IF
186 CALL cscal( n, cmplx( one / ur, -one / ui ), x,
187 $ incx )
188 ELSE
189 CALL cscal( n, cmplx( safmax / ur, -safmax / ui ),
190 $ x, incx )
191 END IF
192 END IF
193 ELSE
194 CALL cscal( n, cmplx( one / ur, -one / ui ), x, incx )
195 END IF
196 END IF
197*
198 RETURN
199*
200* End of CRSCL
201*
complex function cladiv(x, y)
CLADIV performs complex division in real arithmetic, avoiding unnecessary overflow.
Definition cladiv.f:62
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
subroutine csrscl(n, sa, sx, incx)
CSRSCL multiplies a vector by the reciprocal of a real scalar.
Definition csrscl.f:82
subroutine csscal(n, sa, cx, incx)
CSSCAL
Definition csscal.f:78
subroutine cscal(n, ca, cx, incx)
CSCAL
Definition cscal.f:78
Here is the call graph for this function:
Here is the caller graph for this function: