203 SUBROUTINE zgebrd( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK,
211 INTEGER INFO, LDA, LWORK, M, N
214 DOUBLE PRECISION D( * ), E( * )
215 COMPLEX*16 A( LDA, * ), TAUP( * ), TAUQ( * ), WORK( * )
222 parameter( one = ( 1.0d+0, 0.0d+0 ) )
226 INTEGER I, IINFO, J, LDWRKX, LDWRKY, LWKOPT, MINMN, NB,
233 INTRINSIC dble, max, min
244 nb = max( 1, ilaenv( 1,
'ZGEBRD',
' ', m, n, -1, -1 ) )
246 work( 1 ) = dble( lwkopt )
247 lquery = ( lwork.EQ.-1 )
250 ELSE IF( n.LT.0 )
THEN
252 ELSE IF( lda.LT.max( 1, m ) )
THEN
254 ELSE IF( lwork.LT.max( 1, m, n ) .AND. .NOT.lquery )
THEN
258 CALL xerbla(
'ZGEBRD', -info )
260 ELSE IF( lquery )
THEN
267 IF( minmn.EQ.0 )
THEN
276 IF( nb.GT.1 .AND. nb.LT.minmn )
THEN
280 nx = max( nb, ilaenv( 3,
'ZGEBRD',
' ', m, n, -1, -1 ) )
284 IF( nx.LT.minmn )
THEN
286 IF( lwork.LT.ws )
THEN
291 nbmin = ilaenv( 2,
'ZGEBRD',
' ', m, n, -1, -1 )
292 IF( lwork.GE.( m+n )*nbmin )
THEN
304 DO 30 i = 1, minmn - nx, nb
310 CALL zlabrd( m-i+1, n-i+1, nb, a( i, i ), lda, d( i ), e( i ),
311 $ tauq( i ), taup( i ), work, ldwrkx,
312 $ work( ldwrkx*nb+1 ), ldwrky )
317 CALL zgemm(
'No transpose',
'Conjugate transpose', m-i-nb+1,
318 $ n-i-nb+1, nb, -one, a( i+nb, i ), lda,
319 $ work( ldwrkx*nb+nb+1 ), ldwrky, one,
320 $ a( i+nb, i+nb ), lda )
321 CALL zgemm(
'No transpose',
'No transpose', m-i-nb+1, n-i-nb+1,
322 $ nb, -one, work( nb+1 ), ldwrkx, a( i, i+nb ), lda,
323 $ one, a( i+nb, i+nb ), lda )
328 DO 10 j = i, i + nb - 1
333 DO 20 j = i, i + nb - 1
342 CALL zgebd2( m-i+1, n-i+1, a( i, i ), lda, d( i ), e( i ),
343 $ tauq( i ), taup( i ), work, iinfo )
subroutine xerbla(srname, info)
subroutine zgebd2(m, n, a, lda, d, e, tauq, taup, work, info)
ZGEBD2 reduces a general matrix to bidiagonal form using an unblocked algorithm.
subroutine zgebrd(m, n, a, lda, d, e, tauq, taup, work, lwork, info)
ZGEBRD
subroutine zgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
ZGEMM
subroutine zlabrd(m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy)
ZLABRD reduces the first nb rows and columns of a general matrix to a bidiagonal form.