186      SUBROUTINE zgebd2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
 
  193      INTEGER            INFO, LDA, M, N
 
  196      DOUBLE PRECISION   D( * ), E( * )
 
  197      COMPLEX*16         A( LDA, * ), TAUP( * ), TAUQ( * ), WORK( * )
 
  204      parameter( zero = ( 0.0d+0, 0.0d+0 ) )
 
  213      INTRINSIC          dconjg, max, min
 
  222      ELSE IF( n.LT.0 ) 
THEN 
  224      ELSE IF( lda.LT.max( 1, m ) ) 
THEN 
  228         CALL xerbla( 
'ZGEBD2', -info )
 
  241            CALL zlarfg( m-i+1, alpha, a( min( i+1, m ), i ), 1,
 
  243            d( i ) = dble( alpha )
 
  248     $         
CALL zlarf1f( 
'Left', m-i+1, n-i, a( i, i ), 1,
 
  249     $                     dconjg( tauq( i ) ), a( i, i+1 ), lda, work )
 
  257               CALL zlacgv( n-i, a( i, i+1 ), lda )
 
  259               CALL zlarfg( n-i, alpha, a( i, min( i+2, n ) ), lda,
 
  261               e( i ) = dble( alpha )
 
  265               CALL zlarf1f( 
'Right', m-i, n-i, a( i, i+1 ), lda,
 
  266     $                     taup( i ), a( i+1, i+1 ), lda, work )
 
  267               CALL zlacgv( n-i, a( i, i+1 ), lda )
 
  281            CALL zlacgv( n-i+1, a( i, i ), lda )
 
  283            CALL zlarfg( n-i+1, alpha, a( i, min( i+1, n ) ), lda,
 
  285            d( i ) = dble( alpha )
 
  290     $         
CALL zlarf1f( 
'Right', m-i, n-i+1, a( i, i ), lda,
 
  291     $                     taup( i ), a( i+1, i ), lda, work )
 
  292            CALL zlacgv( n-i+1, a( i, i ), lda )
 
  301               CALL zlarfg( m-i, alpha, a( min( i+2, m ), i ), 1,
 
  303               e( i ) = dble( alpha )
 
  307               CALL zlarf1f( 
'Left', m-i, n-i, a( i+1, i ), 1,
 
  308     $                     dconjg( tauq( i ) ), a( i+1, i+1 ), lda,
 
 
subroutine zgebd2(m, n, a, lda, d, e, tauq, taup, work, info)
ZGEBD2 reduces a general matrix to bidiagonal form using an unblocked algorithm.
subroutine zlarf1f(side, m, n, v, incv, tau, c, ldc, work)
ZLARF1F applies an elementary reflector to a general rectangular