188 SUBROUTINE zgebd2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
195 INTEGER INFO, LDA, M, N
198 DOUBLE PRECISION D( * ), E( * )
199 COMPLEX*16 A( LDA, * ), TAUP( * ), TAUQ( * ), WORK( * )
206 parameter( zero = ( 0.0d+0, 0.0d+0 ),
207 $ one = ( 1.0d+0, 0.0d+0 ) )
217 INTRINSIC dconjg, max, min
226 ELSE IF( n.LT.0 )
THEN
228 ELSE IF( lda.LT.max( 1, m ) )
THEN
232 CALL xerbla(
'ZGEBD2', -info )
245 CALL zlarfg( m-i+1, alpha, a( min( i+1, m ), i ), 1,
247 d( i ) = dble( alpha )
253 $
CALL zlarf(
'Left', m-i+1, n-i, a( i, i ), 1,
254 $ dconjg( tauq( i ) ), a( i, i+1 ), lda, work )
262 CALL zlacgv( n-i, a( i, i+1 ), lda )
264 CALL zlarfg( n-i, alpha, a( i, min( i+2, n ) ), lda,
266 e( i ) = dble( alpha )
271 CALL zlarf(
'Right', m-i, n-i, a( i, i+1 ), lda,
272 $ taup( i ), a( i+1, i+1 ), lda, work )
273 CALL zlacgv( n-i, a( i, i+1 ), lda )
287 CALL zlacgv( n-i+1, a( i, i ), lda )
289 CALL zlarfg( n-i+1, alpha, a( i, min( i+1, n ) ), lda,
291 d( i ) = dble( alpha )
297 $
CALL zlarf(
'Right', m-i, n-i+1, a( i, i ), lda,
298 $ taup( i ), a( i+1, i ), lda, work )
299 CALL zlacgv( n-i+1, a( i, i ), lda )
308 CALL zlarfg( m-i, alpha, a( min( i+2, m ), i ), 1,
310 e( i ) = dble( alpha )
315 CALL zlarf(
'Left', m-i, n-i, a( i+1, i ), 1,
316 $ dconjg( tauq( i ) ), a( i+1, i+1 ), lda,
subroutine xerbla(srname, info)
subroutine zgebd2(m, n, a, lda, d, e, tauq, taup, work, info)
ZGEBD2 reduces a general matrix to bidiagonal form using an unblocked algorithm.
subroutine zlacgv(n, x, incx)
ZLACGV conjugates a complex vector.
subroutine zlarf(side, m, n, v, incv, tau, c, ldc, work)
ZLARF applies an elementary reflector to a general rectangular matrix.
subroutine zlarfg(n, alpha, x, incx, tau)
ZLARFG generates an elementary reflector (Householder matrix).