LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
|
subroutine zqrt16 | ( | character | trans, |
integer | m, | ||
integer | n, | ||
integer | nrhs, | ||
complex*16, dimension( lda, * ) | a, | ||
integer | lda, | ||
complex*16, dimension( ldx, * ) | x, | ||
integer | ldx, | ||
complex*16, dimension( ldb, * ) | b, | ||
integer | ldb, | ||
double precision, dimension( * ) | rwork, | ||
double precision | resid | ||
) |
ZQRT16
ZQRT16 computes the residual for a solution of a system of linear equations A*x = b or A'*x = b: RESID = norm(B - A*X) / ( max(m,n) * norm(A) * norm(X) * EPS ), where EPS is the machine epsilon.
[in] | TRANS | TRANS is CHARACTER*1 Specifies the form of the system of equations: = 'N': A *x = b = 'T': A^T*x = b, where A^T is the transpose of A = 'C': A^H*x = b, where A^H is the conjugate transpose of A |
[in] | M | M is INTEGER The number of rows of the matrix A. M >= 0. |
[in] | N | N is INTEGER The number of columns of the matrix A. N >= 0. |
[in] | NRHS | NRHS is INTEGER The number of columns of B, the matrix of right hand sides. NRHS >= 0. |
[in] | A | A is COMPLEX*16 array, dimension (LDA,N) The original M x N matrix A. |
[in] | LDA | LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). |
[in] | X | X is COMPLEX*16 array, dimension (LDX,NRHS) The computed solution vectors for the system of linear equations. |
[in] | LDX | LDX is INTEGER The leading dimension of the array X. If TRANS = 'N', LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M). |
[in,out] | B | B is COMPLEX*16 array, dimension (LDB,NRHS) On entry, the right hand side vectors for the system of linear equations. On exit, B is overwritten with the difference B - A*X. |
[in] | LDB | LDB is INTEGER The leading dimension of the array B. IF TRANS = 'N', LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N). |
[out] | RWORK | RWORK is DOUBLE PRECISION array, dimension (M) |
[out] | RESID | RESID is DOUBLE PRECISION The maximum over the number of right hand sides of norm(B - A*X) / ( max(m,n) * norm(A) * norm(X) * EPS ). |
Definition at line 131 of file zqrt16.f.