LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ sdrvvx()

subroutine sdrvvx ( integer nsizes,
integer, dimension( * ) nn,
integer ntypes,
logical, dimension( * ) dotype,
integer, dimension( 4 ) iseed,
real thresh,
integer niunit,
integer nounit,
real, dimension( lda, * ) a,
integer lda,
real, dimension( lda, * ) h,
real, dimension( * ) wr,
real, dimension( * ) wi,
real, dimension( * ) wr1,
real, dimension( * ) wi1,
real, dimension( ldvl, * ) vl,
integer ldvl,
real, dimension( ldvr, * ) vr,
integer ldvr,
real, dimension( ldlre, * ) lre,
integer ldlre,
real, dimension( * ) rcondv,
real, dimension( * ) rcndv1,
real, dimension( * ) rcdvin,
real, dimension( * ) rconde,
real, dimension( * ) rcnde1,
real, dimension( * ) rcdein,
real, dimension( * ) scale,
real, dimension( * ) scale1,
real, dimension( 11 ) result,
real, dimension( * ) work,
integer nwork,
integer, dimension( * ) iwork,
integer info )

SDRVVX

Purpose:
!> !> SDRVVX checks the nonsymmetric eigenvalue problem expert driver !> SGEEVX. !> !> SDRVVX uses both test matrices generated randomly depending on !> data supplied in the calling sequence, as well as on data !> read from an input file and including precomputed condition !> numbers to which it compares the ones it computes. !> !> When SDRVVX is called, a number of matrix () and a !> number of matrix are specified in the calling sequence. !> For each size () and each type of matrix, one matrix will be !> generated and used to test the nonsymmetric eigenroutines. For !> each matrix, 9 tests will be performed: !> !> (1) | A * VR - VR * W | / ( n |A| ulp ) !> !> Here VR is the matrix of unit right eigenvectors. !> W is a block diagonal matrix, with a 1x1 block for each !> real eigenvalue and a 2x2 block for each complex conjugate !> pair. If eigenvalues j and j+1 are a complex conjugate pair, !> so WR(j) = WR(j+1) = wr and WI(j) = - WI(j+1) = wi, then the !> 2 x 2 block corresponding to the pair will be: !> !> ( wr wi ) !> ( -wi wr ) !> !> Such a block multiplying an n x 2 matrix ( ur ui ) on the !> right will be the same as multiplying ur + i*ui by wr + i*wi. !> !> (2) | A**H * VL - VL * W**H | / ( n |A| ulp ) !> !> Here VL is the matrix of unit left eigenvectors, A**H is the !> conjugate transpose of A, and W is as above. !> !> (3) | |VR(i)| - 1 | / ulp and largest component real !> !> VR(i) denotes the i-th column of VR. !> !> (4) | |VL(i)| - 1 | / ulp and largest component real !> !> VL(i) denotes the i-th column of VL. !> !> (5) W(full) = W(partial) !> !> W(full) denotes the eigenvalues computed when VR, VL, RCONDV !> and RCONDE are also computed, and W(partial) denotes the !> eigenvalues computed when only some of VR, VL, RCONDV, and !> RCONDE are computed. !> !> (6) VR(full) = VR(partial) !> !> VR(full) denotes the right eigenvectors computed when VL, RCONDV !> and RCONDE are computed, and VR(partial) denotes the result !> when only some of VL and RCONDV are computed. !> !> (7) VL(full) = VL(partial) !> !> VL(full) denotes the left eigenvectors computed when VR, RCONDV !> and RCONDE are computed, and VL(partial) denotes the result !> when only some of VR and RCONDV are computed. !> !> (8) 0 if SCALE, ILO, IHI, ABNRM (full) = !> SCALE, ILO, IHI, ABNRM (partial) !> 1/ulp otherwise !> !> SCALE, ILO, IHI and ABNRM describe how the matrix is balanced. !> (full) is when VR, VL, RCONDE and RCONDV are also computed, and !> (partial) is when some are not computed. !> !> (9) RCONDV(full) = RCONDV(partial) !> !> RCONDV(full) denotes the reciprocal condition numbers of the !> right eigenvectors computed when VR, VL and RCONDE are also !> computed. RCONDV(partial) denotes the reciprocal condition !> numbers when only some of VR, VL and RCONDE are computed. !> !> The are specified by an array NN(1:NSIZES); the value of !> each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); !> if DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) The zero matrix. !> (2) The identity matrix. !> (3) A (transposed) Jordan block, with 1's on the diagonal. !> !> (4) A diagonal matrix with evenly spaced entries !> 1, ..., ULP and random signs. !> (ULP = (first number larger than 1) - 1 ) !> (5) A diagonal matrix with geometrically spaced entries !> 1, ..., ULP and random signs. !> (6) A diagonal matrix with entries 1, ULP, ..., ULP !> and random signs. !> !> (7) Same as (4), but multiplied by a constant near !> the overflow threshold !> (8) Same as (4), but multiplied by a constant near !> the underflow threshold !> !> (9) A matrix of the form U' T U, where U is orthogonal and !> T has evenly spaced entries 1, ..., ULP with random signs !> on the diagonal and random O(1) entries in the upper !> triangle. !> !> (10) A matrix of the form U' T U, where U is orthogonal and !> T has geometrically spaced entries 1, ..., ULP with random !> signs on the diagonal and random O(1) entries in the upper !> triangle. !> !> (11) A matrix of the form U' T U, where U is orthogonal and !> T has entries 1, ULP,..., ULP with random !> signs on the diagonal and random O(1) entries in the upper !> triangle. !> !> (12) A matrix of the form U' T U, where U is orthogonal and !> T has real or complex conjugate paired eigenvalues randomly !> chosen from ( ULP, 1 ) and random O(1) entries in the upper !> triangle. !> !> (13) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP !> with random signs on the diagonal and random O(1) entries !> in the upper triangle. !> !> (14) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has geometrically spaced entries !> 1, ..., ULP with random signs on the diagonal and random !> O(1) entries in the upper triangle. !> !> (15) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has entries 1, ULP,..., ULP !> with random signs on the diagonal and random O(1) entries !> in the upper triangle. !> !> (16) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has real or complex conjugate paired !> eigenvalues randomly chosen from ( ULP, 1 ) and random !> O(1) entries in the upper triangle. !> !> (17) Same as (16), but multiplied by a constant !> near the overflow threshold !> (18) Same as (16), but multiplied by a constant !> near the underflow threshold !> !> (19) Nonsymmetric matrix with random entries chosen from (-1,1). !> If N is at least 4, all entries in first two rows and last !> row, and first column and last two columns are zero. !> (20) Same as (19), but multiplied by a constant !> near the overflow threshold !> (21) Same as (19), but multiplied by a constant !> near the underflow threshold !> !> In addition, an input file will be read from logical unit number !> NIUNIT. The file contains matrices along with precomputed !> eigenvalues and reciprocal condition numbers for the eigenvalues !> and right eigenvectors. For these matrices, in addition to tests !> (1) to (9) we will compute the following two tests: !> !> (10) |RCONDV - RCDVIN| / cond(RCONDV) !> !> RCONDV is the reciprocal right eigenvector condition number !> computed by SGEEVX and RCDVIN (the precomputed true value) !> is supplied as input. cond(RCONDV) is the condition number of !> RCONDV, and takes errors in computing RCONDV into account, so !> that the resulting quantity should be O(ULP). cond(RCONDV) is !> essentially given by norm(A)/RCONDE. !> !> (11) |RCONDE - RCDEIN| / cond(RCONDE) !> !> RCONDE is the reciprocal eigenvalue condition number !> computed by SGEEVX and RCDEIN (the precomputed true value) !> is supplied as input. cond(RCONDE) is the condition number !> of RCONDE, and takes errors in computing RCONDE into account, !> so that the resulting quantity should be O(ULP). cond(RCONDE) !> is essentially given by norm(A)/RCONDV. !>
Parameters
[in]NSIZES
!> NSIZES is INTEGER !> The number of sizes of matrices to use. NSIZES must be at !> least zero. If it is zero, no randomly generated matrices !> are tested, but any test matrices read from NIUNIT will be !> tested. !>
[in]NN
!> NN is INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !>
[in]NTYPES
!> NTYPES is INTEGER !> The number of elements in DOTYPE. NTYPES must be at least !> zero. If it is zero, no randomly generated test matrices !> are tested, but and test matrices read from NIUNIT will be !> tested. If it is MAXTYP+1 and NSIZES is 1, then an !> additional type, MAXTYP+1 is defined, which is to use !> whatever matrix is in A. This is only useful if !> DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. . !>
[in]DOTYPE
!> DOTYPE is LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !>
[in,out]ISEED
!> ISEED is INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to SDRVVX to continue the same random number !> sequence. !>
[in]THRESH
!> THRESH is REAL !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !>
[in]NIUNIT
!> NIUNIT is INTEGER !> The FORTRAN unit number for reading in the data file of !> problems to solve. !>
[in]NOUNIT
!> NOUNIT is INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns INFO not equal to 0.) !>
[out]A
!> A is REAL array, dimension !> (LDA, max(NN,12)) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually used. !>
[in]LDA
!> LDA is INTEGER !> The leading dimension of the arrays A and H. !> LDA >= max(NN,12), since 12 is the dimension of the largest !> matrix in the precomputed input file. !>
[out]H
!> H is REAL array, dimension !> (LDA, max(NN,12)) !> Another copy of the test matrix A, modified by SGEEVX. !>
[out]WR
!> WR is REAL array, dimension (max(NN)) !>
[out]WI
!> WI is REAL array, dimension (max(NN)) !> The real and imaginary parts of the eigenvalues of A. !> On exit, WR + WI*i are the eigenvalues of the matrix in A. !>
[out]WR1
!> WR1 is REAL array, dimension (max(NN,12)) !>
[out]WI1
!> WI1 is REAL array, dimension (max(NN,12)) !> !> Like WR, WI, these arrays contain the eigenvalues of A, !> but those computed when SGEEVX only computes a partial !> eigendecomposition, i.e. not the eigenvalues and left !> and right eigenvectors. !>
[out]VL
!> VL is REAL array, dimension !> (LDVL, max(NN,12)) !> VL holds the computed left eigenvectors. !>
[in]LDVL
!> LDVL is INTEGER !> Leading dimension of VL. Must be at least max(1,max(NN,12)). !>
[out]VR
!> VR is REAL array, dimension !> (LDVR, max(NN,12)) !> VR holds the computed right eigenvectors. !>
[in]LDVR
!> LDVR is INTEGER !> Leading dimension of VR. Must be at least max(1,max(NN,12)). !>
[out]LRE
!> LRE is REAL array, dimension !> (LDLRE, max(NN,12)) !> LRE holds the computed right or left eigenvectors. !>
[in]LDLRE
!> LDLRE is INTEGER !> Leading dimension of LRE. Must be at least max(1,max(NN,12)) !>
[out]RCONDV
!> RCONDV is REAL array, dimension (N) !> RCONDV holds the computed reciprocal condition numbers !> for eigenvectors. !>
[out]RCNDV1
!> RCNDV1 is REAL array, dimension (N) !> RCNDV1 holds more computed reciprocal condition numbers !> for eigenvectors. !>
[out]RCDVIN
!> RCDVIN is REAL array, dimension (N) !> When COMP = .TRUE. RCDVIN holds the precomputed reciprocal !> condition numbers for eigenvectors to be compared with !> RCONDV. !>
[out]RCONDE
!> RCONDE is REAL array, dimension (N) !> RCONDE holds the computed reciprocal condition numbers !> for eigenvalues. !>
[out]RCNDE1
!> RCNDE1 is REAL array, dimension (N) !> RCNDE1 holds more computed reciprocal condition numbers !> for eigenvalues. !>
[out]RCDEIN
!> RCDEIN is REAL array, dimension (N) !> When COMP = .TRUE. RCDEIN holds the precomputed reciprocal !> condition numbers for eigenvalues to be compared with !> RCONDE. !>
[out]SCALE
!> SCALE is REAL array, dimension (N) !> Holds information describing balancing of matrix. !>
[out]SCALE1
!> SCALE1 is REAL array, dimension (N) !> Holds information describing balancing of matrix. !>
[out]RESULT
!> RESULT is REAL array, dimension (11) !> The values computed by the seven tests described above. !> The values are currently limited to 1/ulp, to avoid overflow. !>
[out]WORK
!> WORK is REAL array, dimension (NWORK) !>
[in]NWORK
!> NWORK is INTEGER !> The number of entries in WORK. This must be at least !> max(6*12+2*12**2,6*NN(j)+2*NN(j)**2) = !> max( 360 ,6*NN(j)+2*NN(j)**2) for all j. !>
[out]IWORK
!> IWORK is INTEGER array, dimension (2*max(NN,12)) !>
[out]INFO
!> INFO is INTEGER !> If 0, then successful exit. !> If <0, then input parameter -INFO is incorrect. !> If >0, SLATMR, SLATMS, SLATME or SGET23 returned an error !> code, and INFO is its absolute value. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NMAX Largest value in NN or 12. !> NERRS The number of tests which have exceeded THRESH !> COND, CONDS, !> IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTULP, RTULPI Square roots of the previous 4 values. !> !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !> KCONDS(j) Selectw whether CONDS is to be 1 or !> 1/sqrt(ulp). (0 means irrelevant.) !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 515 of file sdrvvx.f.

520*
521* -- LAPACK test routine --
522* -- LAPACK is a software package provided by Univ. of Tennessee, --
523* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
524*
525* .. Scalar Arguments ..
526 INTEGER INFO, LDA, LDLRE, LDVL, LDVR, NIUNIT, NOUNIT,
527 $ NSIZES, NTYPES, NWORK
528 REAL THRESH
529* ..
530* .. Array Arguments ..
531 LOGICAL DOTYPE( * )
532 INTEGER ISEED( 4 ), IWORK( * ), NN( * )
533 REAL A( LDA, * ), H( LDA, * ), LRE( LDLRE, * ),
534 $ RCDEIN( * ), RCDVIN( * ), RCNDE1( * ),
535 $ RCNDV1( * ), RCONDE( * ), RCONDV( * ),
536 $ RESULT( 11 ), SCALE( * ), SCALE1( * ),
537 $ VL( LDVL, * ), VR( LDVR, * ), WI( * ),
538 $ WI1( * ), WORK( * ), WR( * ), WR1( * )
539* ..
540*
541* =====================================================================
542*
543* .. Parameters ..
544 REAL ZERO, ONE
545 parameter( zero = 0.0e0, one = 1.0e0 )
546 INTEGER MAXTYP
547 parameter( maxtyp = 21 )
548* ..
549* .. Local Scalars ..
550 LOGICAL BADNN
551 CHARACTER BALANC
552 CHARACTER*3 PATH
553 INTEGER I, IBAL, IINFO, IMODE, ITYPE, IWK, J, JCOL,
554 $ JSIZE, JTYPE, MTYPES, N, NERRS, NFAIL,
555 $ NMAX, NNWORK, NTEST, NTESTF, NTESTT
556 REAL ANORM, COND, CONDS, OVFL, RTULP, RTULPI, ULP,
557 $ ULPINV, UNFL
558* ..
559* .. Local Arrays ..
560 CHARACTER ADUMMA( 1 ), BAL( 4 )
561 INTEGER IDUMMA( 1 ), IOLDSD( 4 ), KCONDS( MAXTYP ),
562 $ KMAGN( MAXTYP ), KMODE( MAXTYP ),
563 $ KTYPE( MAXTYP )
564* ..
565* .. External Functions ..
566 REAL SLAMCH
567 EXTERNAL slamch
568* ..
569* .. External Subroutines ..
570 EXTERNAL sget23, slasum, slatme, slatmr, slatms, slaset,
571 $ xerbla
572* ..
573* .. Intrinsic Functions ..
574 INTRINSIC abs, max, min, sqrt
575* ..
576* .. Data statements ..
577 DATA ktype / 1, 2, 3, 5*4, 4*6, 6*6, 3*9 /
578 DATA kmagn / 3*1, 1, 1, 1, 2, 3, 4*1, 1, 1, 1, 1, 2,
579 $ 3, 1, 2, 3 /
580 DATA kmode / 3*0, 4, 3, 1, 4, 4, 4, 3, 1, 5, 4, 3,
581 $ 1, 5, 5, 5, 4, 3, 1 /
582 DATA kconds / 3*0, 5*0, 4*1, 6*2, 3*0 /
583 DATA bal / 'N', 'P', 'S', 'B' /
584* ..
585* .. Executable Statements ..
586*
587 path( 1: 1 ) = 'Single precision'
588 path( 2: 3 ) = 'VX'
589*
590* Check for errors
591*
592 ntestt = 0
593 ntestf = 0
594 info = 0
595*
596* Important constants
597*
598 badnn = .false.
599*
600* 12 is the largest dimension in the input file of precomputed
601* problems
602*
603 nmax = 12
604 DO 10 j = 1, nsizes
605 nmax = max( nmax, nn( j ) )
606 IF( nn( j ).LT.0 )
607 $ badnn = .true.
608 10 CONTINUE
609*
610* Check for errors
611*
612 IF( nsizes.LT.0 ) THEN
613 info = -1
614 ELSE IF( badnn ) THEN
615 info = -2
616 ELSE IF( ntypes.LT.0 ) THEN
617 info = -3
618 ELSE IF( thresh.LT.zero ) THEN
619 info = -6
620 ELSE IF( lda.LT.1 .OR. lda.LT.nmax ) THEN
621 info = -10
622 ELSE IF( ldvl.LT.1 .OR. ldvl.LT.nmax ) THEN
623 info = -17
624 ELSE IF( ldvr.LT.1 .OR. ldvr.LT.nmax ) THEN
625 info = -19
626 ELSE IF( ldlre.LT.1 .OR. ldlre.LT.nmax ) THEN
627 info = -21
628 ELSE IF( 6*nmax+2*nmax**2.GT.nwork ) THEN
629 info = -32
630 END IF
631*
632 IF( info.NE.0 ) THEN
633 CALL xerbla( 'SDRVVX', -info )
634 RETURN
635 END IF
636*
637* If nothing to do check on NIUNIT
638*
639 IF( nsizes.EQ.0 .OR. ntypes.EQ.0 )
640 $ GO TO 160
641*
642* More Important constants
643*
644 unfl = slamch( 'Safe minimum' )
645 ovfl = one / unfl
646 ulp = slamch( 'Precision' )
647 ulpinv = one / ulp
648 rtulp = sqrt( ulp )
649 rtulpi = one / rtulp
650*
651* Loop over sizes, types
652*
653 nerrs = 0
654*
655 DO 150 jsize = 1, nsizes
656 n = nn( jsize )
657 IF( nsizes.NE.1 ) THEN
658 mtypes = min( maxtyp, ntypes )
659 ELSE
660 mtypes = min( maxtyp+1, ntypes )
661 END IF
662*
663 DO 140 jtype = 1, mtypes
664 IF( .NOT.dotype( jtype ) )
665 $ GO TO 140
666*
667* Save ISEED in case of an error.
668*
669 DO 20 j = 1, 4
670 ioldsd( j ) = iseed( j )
671 20 CONTINUE
672*
673* Compute "A"
674*
675* Control parameters:
676*
677* KMAGN KCONDS KMODE KTYPE
678* =1 O(1) 1 clustered 1 zero
679* =2 large large clustered 2 identity
680* =3 small exponential Jordan
681* =4 arithmetic diagonal, (w/ eigenvalues)
682* =5 random log symmetric, w/ eigenvalues
683* =6 random general, w/ eigenvalues
684* =7 random diagonal
685* =8 random symmetric
686* =9 random general
687* =10 random triangular
688*
689 IF( mtypes.GT.maxtyp )
690 $ GO TO 90
691*
692 itype = ktype( jtype )
693 imode = kmode( jtype )
694*
695* Compute norm
696*
697 GO TO ( 30, 40, 50 )kmagn( jtype )
698*
699 30 CONTINUE
700 anorm = one
701 GO TO 60
702*
703 40 CONTINUE
704 anorm = ovfl*ulp
705 GO TO 60
706*
707 50 CONTINUE
708 anorm = unfl*ulpinv
709 GO TO 60
710*
711 60 CONTINUE
712*
713 CALL slaset( 'Full', lda, n, zero, zero, a, lda )
714 iinfo = 0
715 cond = ulpinv
716*
717* Special Matrices -- Identity & Jordan block
718*
719* Zero
720*
721 IF( itype.EQ.1 ) THEN
722 iinfo = 0
723*
724 ELSE IF( itype.EQ.2 ) THEN
725*
726* Identity
727*
728 DO 70 jcol = 1, n
729 a( jcol, jcol ) = anorm
730 70 CONTINUE
731*
732 ELSE IF( itype.EQ.3 ) THEN
733*
734* Jordan Block
735*
736 DO 80 jcol = 1, n
737 a( jcol, jcol ) = anorm
738 IF( jcol.GT.1 )
739 $ a( jcol, jcol-1 ) = one
740 80 CONTINUE
741*
742 ELSE IF( itype.EQ.4 ) THEN
743*
744* Diagonal Matrix, [Eigen]values Specified
745*
746 CALL slatms( n, n, 'S', iseed, 'S', work, imode, cond,
747 $ anorm, 0, 0, 'N', a, lda, work( n+1 ),
748 $ iinfo )
749*
750 ELSE IF( itype.EQ.5 ) THEN
751*
752* Symmetric, eigenvalues specified
753*
754 CALL slatms( n, n, 'S', iseed, 'S', work, imode, cond,
755 $ anorm, n, n, 'N', a, lda, work( n+1 ),
756 $ iinfo )
757*
758 ELSE IF( itype.EQ.6 ) THEN
759*
760* General, eigenvalues specified
761*
762 IF( kconds( jtype ).EQ.1 ) THEN
763 conds = one
764 ELSE IF( kconds( jtype ).EQ.2 ) THEN
765 conds = rtulpi
766 ELSE
767 conds = zero
768 END IF
769*
770 adumma( 1 ) = ' '
771 CALL slatme( n, 'S', iseed, work, imode, cond, one,
772 $ adumma, 'T', 'T', 'T', work( n+1 ), 4,
773 $ conds, n, n, anorm, a, lda, work( 2*n+1 ),
774 $ iinfo )
775*
776 ELSE IF( itype.EQ.7 ) THEN
777*
778* Diagonal, random eigenvalues
779*
780 CALL slatmr( n, n, 'S', iseed, 'S', work, 6, one, one,
781 $ 'T', 'N', work( n+1 ), 1, one,
782 $ work( 2*n+1 ), 1, one, 'N', idumma, 0, 0,
783 $ zero, anorm, 'NO', a, lda, iwork, iinfo )
784*
785 ELSE IF( itype.EQ.8 ) THEN
786*
787* Symmetric, random eigenvalues
788*
789 CALL slatmr( n, n, 'S', iseed, 'S', work, 6, one, one,
790 $ 'T', 'N', work( n+1 ), 1, one,
791 $ work( 2*n+1 ), 1, one, 'N', idumma, n, n,
792 $ zero, anorm, 'NO', a, lda, iwork, iinfo )
793*
794 ELSE IF( itype.EQ.9 ) THEN
795*
796* General, random eigenvalues
797*
798 CALL slatmr( n, n, 'S', iseed, 'N', work, 6, one, one,
799 $ 'T', 'N', work( n+1 ), 1, one,
800 $ work( 2*n+1 ), 1, one, 'N', idumma, n, n,
801 $ zero, anorm, 'NO', a, lda, iwork, iinfo )
802 IF( n.GE.4 ) THEN
803 CALL slaset( 'Full', 2, n, zero, zero, a, lda )
804 CALL slaset( 'Full', n-3, 1, zero, zero, a( 3, 1 ),
805 $ lda )
806 CALL slaset( 'Full', n-3, 2, zero, zero, a( 3, n-1 ),
807 $ lda )
808 CALL slaset( 'Full', 1, n, zero, zero, a( n, 1 ),
809 $ lda )
810 END IF
811*
812 ELSE IF( itype.EQ.10 ) THEN
813*
814* Triangular, random eigenvalues
815*
816 CALL slatmr( n, n, 'S', iseed, 'N', work, 6, one, one,
817 $ 'T', 'N', work( n+1 ), 1, one,
818 $ work( 2*n+1 ), 1, one, 'N', idumma, n, 0,
819 $ zero, anorm, 'NO', a, lda, iwork, iinfo )
820*
821 ELSE
822*
823 iinfo = 1
824 END IF
825*
826 IF( iinfo.NE.0 ) THEN
827 WRITE( nounit, fmt = 9992 )'Generator', iinfo, n, jtype,
828 $ ioldsd
829 info = abs( iinfo )
830 RETURN
831 END IF
832*
833 90 CONTINUE
834*
835* Test for minimal and generous workspace
836*
837 DO 130 iwk = 1, 3
838 IF( iwk.EQ.1 ) THEN
839 nnwork = 3*n
840 ELSE IF( iwk.EQ.2 ) THEN
841 nnwork = 6*n + n**2
842 ELSE
843 nnwork = 6*n + 2*n**2
844 END IF
845 nnwork = max( nnwork, 1 )
846*
847* Test for all balancing options
848*
849 DO 120 ibal = 1, 4
850 balanc = bal( ibal )
851*
852* Perform tests
853*
854 CALL sget23( .false., balanc, jtype, thresh, ioldsd,
855 $ nounit, n, a, lda, h, wr, wi, wr1, wi1,
856 $ vl, ldvl, vr, ldvr, lre, ldlre, rcondv,
857 $ rcndv1, rcdvin, rconde, rcnde1, rcdein,
858 $ scale, scale1, result, work, nnwork,
859 $ iwork, info )
860*
861* Check for RESULT(j) > THRESH
862*
863 ntest = 0
864 nfail = 0
865 DO 100 j = 1, 9
866 IF( result( j ).GE.zero )
867 $ ntest = ntest + 1
868 IF( result( j ).GE.thresh )
869 $ nfail = nfail + 1
870 100 CONTINUE
871*
872 IF( nfail.GT.0 )
873 $ ntestf = ntestf + 1
874 IF( ntestf.EQ.1 ) THEN
875 WRITE( nounit, fmt = 9999 )path
876 WRITE( nounit, fmt = 9998 )
877 WRITE( nounit, fmt = 9997 )
878 WRITE( nounit, fmt = 9996 )
879 WRITE( nounit, fmt = 9995 )thresh
880 ntestf = 2
881 END IF
882*
883 DO 110 j = 1, 9
884 IF( result( j ).GE.thresh ) THEN
885 WRITE( nounit, fmt = 9994 )balanc, n, iwk,
886 $ ioldsd, jtype, j, result( j )
887 END IF
888 110 CONTINUE
889*
890 nerrs = nerrs + nfail
891 ntestt = ntestt + ntest
892*
893 120 CONTINUE
894 130 CONTINUE
895 140 CONTINUE
896 150 CONTINUE
897*
898 160 CONTINUE
899*
900* Read in data from file to check accuracy of condition estimation.
901* Assume input eigenvalues are sorted lexicographically (increasing
902* by real part, then decreasing by imaginary part)
903*
904 jtype = 0
905 170 CONTINUE
906 READ( niunit, fmt = *, END = 220 )n
907*
908* Read input data until N=0
909*
910 IF( n.EQ.0 )
911 $ GO TO 220
912 jtype = jtype + 1
913 iseed( 1 ) = jtype
914 DO 180 i = 1, n
915 READ( niunit, fmt = * )( a( i, j ), j = 1, n )
916 180 CONTINUE
917 DO 190 i = 1, n
918 READ( niunit, fmt = * )wr1( i ), wi1( i ), rcdein( i ),
919 $ rcdvin( i )
920 190 CONTINUE
921 CALL sget23( .true., 'N', 22, thresh, iseed, nounit, n, a, lda, h,
922 $ wr, wi, wr1, wi1, vl, ldvl, vr, ldvr, lre, ldlre,
923 $ rcondv, rcndv1, rcdvin, rconde, rcnde1, rcdein,
924 $ scale, scale1, result, work, 6*n+2*n**2, iwork,
925 $ info )
926*
927* Check for RESULT(j) > THRESH
928*
929 ntest = 0
930 nfail = 0
931 DO 200 j = 1, 11
932 IF( result( j ).GE.zero )
933 $ ntest = ntest + 1
934 IF( result( j ).GE.thresh )
935 $ nfail = nfail + 1
936 200 CONTINUE
937*
938 IF( nfail.GT.0 )
939 $ ntestf = ntestf + 1
940 IF( ntestf.EQ.1 ) THEN
941 WRITE( nounit, fmt = 9999 )path
942 WRITE( nounit, fmt = 9998 )
943 WRITE( nounit, fmt = 9997 )
944 WRITE( nounit, fmt = 9996 )
945 WRITE( nounit, fmt = 9995 )thresh
946 ntestf = 2
947 END IF
948*
949 DO 210 j = 1, 11
950 IF( result( j ).GE.thresh ) THEN
951 WRITE( nounit, fmt = 9993 )n, jtype, j, result( j )
952 END IF
953 210 CONTINUE
954*
955 nerrs = nerrs + nfail
956 ntestt = ntestt + ntest
957 GO TO 170
958 220 CONTINUE
959*
960* Summary
961*
962 CALL slasum( path, nounit, nerrs, ntestt )
963*
964 9999 FORMAT( / 1x, a3, ' -- Real Eigenvalue-Eigenvector Decomposition',
965 $ ' Expert Driver', /
966 $ ' Matrix types (see SDRVVX for details): ' )
967*
968 9998 FORMAT( / ' Special Matrices:', / ' 1=Zero matrix. ',
969 $ ' ', ' 5=Diagonal: geometr. spaced entries.',
970 $ / ' 2=Identity matrix. ', ' 6=Diagona',
971 $ 'l: clustered entries.', / ' 3=Transposed Jordan block. ',
972 $ ' ', ' 7=Diagonal: large, evenly spaced.', / ' ',
973 $ '4=Diagonal: evenly spaced entries. ', ' 8=Diagonal: s',
974 $ 'mall, evenly spaced.' )
975 9997 FORMAT( ' Dense, Non-Symmetric Matrices:', / ' 9=Well-cond., ev',
976 $ 'enly spaced eigenvals.', ' 14=Ill-cond., geomet. spaced e',
977 $ 'igenals.', / ' 10=Well-cond., geom. spaced eigenvals. ',
978 $ ' 15=Ill-conditioned, clustered e.vals.', / ' 11=Well-cond',
979 $ 'itioned, clustered e.vals. ', ' 16=Ill-cond., random comp',
980 $ 'lex ', / ' 12=Well-cond., random complex ', ' ',
981 $ ' 17=Ill-cond., large rand. complx ', / ' 13=Ill-condi',
982 $ 'tioned, evenly spaced. ', ' 18=Ill-cond., small rand.',
983 $ ' complx ' )
984 9996 FORMAT( ' 19=Matrix with random O(1) entries. ', ' 21=Matrix ',
985 $ 'with small random entries.', / ' 20=Matrix with large ran',
986 $ 'dom entries. ', ' 22=Matrix read from input file', / )
987 9995 FORMAT( ' Tests performed with test threshold =', f8.2,
988 $ / / ' 1 = | A VR - VR W | / ( n |A| ulp ) ',
989 $ / ' 2 = | transpose(A) VL - VL W | / ( n |A| ulp ) ',
990 $ / ' 3 = | |VR(i)| - 1 | / ulp ',
991 $ / ' 4 = | |VL(i)| - 1 | / ulp ',
992 $ / ' 5 = 0 if W same no matter if VR or VL computed,',
993 $ ' 1/ulp otherwise', /
994 $ ' 6 = 0 if VR same no matter what else computed,',
995 $ ' 1/ulp otherwise', /
996 $ ' 7 = 0 if VL same no matter what else computed,',
997 $ ' 1/ulp otherwise', /
998 $ ' 8 = 0 if RCONDV same no matter what else computed,',
999 $ ' 1/ulp otherwise', /
1000 $ ' 9 = 0 if SCALE, ILO, IHI, ABNRM same no matter what else',
1001 $ ' computed, 1/ulp otherwise',
1002 $ / ' 10 = | RCONDV - RCONDV(precomputed) | / cond(RCONDV),',
1003 $ / ' 11 = | RCONDE - RCONDE(precomputed) | / cond(RCONDE),' )
1004 9994 FORMAT( ' BALANC=''', a1, ''',N=', i4, ',IWK=', i1, ', seed=',
1005 $ 4( i4, ',' ), ' type ', i2, ', test(', i2, ')=', g10.3 )
1006 9993 FORMAT( ' N=', i5, ', input example =', i3, ', test(', i2, ')=',
1007 $ g10.3 )
1008 9992 FORMAT( ' SDRVVX: ', a, ' returned INFO=', i6, '.', / 9x, 'N=',
1009 $ i6, ', JTYPE=', i6, ', ISEED=(', 3( i5, ',' ), i5, ')' )
1010*
1011 RETURN
1012*
1013* End of SDRVVX
1014*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
subroutine slaset(uplo, m, n, alpha, beta, a, lda)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition slaset.f:108
subroutine sget23(comp, balanc, jtype, thresh, iseed, nounit, n, a, lda, h, wr, wi, wr1, wi1, vl, ldvl, vr, ldvr, lre, ldlre, rcondv, rcndv1, rcdvin, rconde, rcnde1, rcdein, scale, scale1, result, work, lwork, iwork, info)
SGET23
Definition sget23.f:378
subroutine slasum(type, iounit, ie, nrun)
SLASUM
Definition slasum.f:41
subroutine slatme(n, dist, iseed, d, mode, cond, dmax, ei, rsign, upper, sim, ds, modes, conds, kl, ku, anorm, a, lda, work, info)
SLATME
Definition slatme.f:332
subroutine slatmr(m, n, dist, iseed, sym, d, mode, cond, dmax, rsign, grade, dl, model, condl, dr, moder, condr, pivtng, ipivot, kl, ku, sparse, anorm, pack, a, lda, iwork, info)
SLATMR
Definition slatmr.f:471
subroutine slatms(m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work, info)
SLATMS
Definition slatms.f:321
Here is the call graph for this function:
Here is the caller graph for this function: