LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cggsvd.f
Go to the documentation of this file.
1*> \brief <b> CGGSVD computes the singular value decomposition (SVD) for OTHER matrices</b>
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CGGSVD + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cggsvd.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cggsvd.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cggsvd.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE CGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
22* LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
23* RWORK, IWORK, INFO )
24*
25* .. Scalar Arguments ..
26* CHARACTER JOBQ, JOBU, JOBV
27* INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
28* ..
29* .. Array Arguments ..
30* INTEGER IWORK( * )
31* REAL ALPHA( * ), BETA( * ), RWORK( * )
32* COMPLEX A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
33* $ U( LDU, * ), V( LDV, * ), WORK( * )
34* ..
35*
36*
37*> \par Purpose:
38* =============
39*>
40*> \verbatim
41*>
42*> This routine is deprecated and has been replaced by routine CGGSVD3.
43*>
44*> CGGSVD computes the generalized singular value decomposition (GSVD)
45*> of an M-by-N complex matrix A and P-by-N complex matrix B:
46*>
47*> U**H*A*Q = D1*( 0 R ), V**H*B*Q = D2*( 0 R )
48*>
49*> where U, V and Q are unitary matrices.
50*> Let K+L = the effective numerical rank of the
51*> matrix (A**H,B**H)**H, then R is a (K+L)-by-(K+L) nonsingular upper
52*> triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) "diagonal"
53*> matrices and of the following structures, respectively:
54*>
55*> If M-K-L >= 0,
56*>
57*> K L
58*> D1 = K ( I 0 )
59*> L ( 0 C )
60*> M-K-L ( 0 0 )
61*>
62*> K L
63*> D2 = L ( 0 S )
64*> P-L ( 0 0 )
65*>
66*> N-K-L K L
67*> ( 0 R ) = K ( 0 R11 R12 )
68*> L ( 0 0 R22 )
69*>
70*> where
71*>
72*> C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
73*> S = diag( BETA(K+1), ... , BETA(K+L) ),
74*> C**2 + S**2 = I.
75*>
76*> R is stored in A(1:K+L,N-K-L+1:N) on exit.
77*>
78*> If M-K-L < 0,
79*>
80*> K M-K K+L-M
81*> D1 = K ( I 0 0 )
82*> M-K ( 0 C 0 )
83*>
84*> K M-K K+L-M
85*> D2 = M-K ( 0 S 0 )
86*> K+L-M ( 0 0 I )
87*> P-L ( 0 0 0 )
88*>
89*> N-K-L K M-K K+L-M
90*> ( 0 R ) = K ( 0 R11 R12 R13 )
91*> M-K ( 0 0 R22 R23 )
92*> K+L-M ( 0 0 0 R33 )
93*>
94*> where
95*>
96*> C = diag( ALPHA(K+1), ... , ALPHA(M) ),
97*> S = diag( BETA(K+1), ... , BETA(M) ),
98*> C**2 + S**2 = I.
99*>
100*> (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
101*> ( 0 R22 R23 )
102*> in B(M-K+1:L,N+M-K-L+1:N) on exit.
103*>
104*> The routine computes C, S, R, and optionally the unitary
105*> transformation matrices U, V and Q.
106*>
107*> In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
108*> A and B implicitly gives the SVD of A*inv(B):
109*> A*inv(B) = U*(D1*inv(D2))*V**H.
110*> If ( A**H,B**H)**H has orthonormal columns, then the GSVD of A and B is also
111*> equal to the CS decomposition of A and B. Furthermore, the GSVD can
112*> be used to derive the solution of the eigenvalue problem:
113*> A**H*A x = lambda* B**H*B x.
114*> In some literature, the GSVD of A and B is presented in the form
115*> U**H*A*X = ( 0 D1 ), V**H*B*X = ( 0 D2 )
116*> where U and V are orthogonal and X is nonsingular, and D1 and D2 are
117*> ``diagonal''. The former GSVD form can be converted to the latter
118*> form by taking the nonsingular matrix X as
119*>
120*> X = Q*( I 0 )
121*> ( 0 inv(R) )
122*> \endverbatim
123*
124* Arguments:
125* ==========
126*
127*> \param[in] JOBU
128*> \verbatim
129*> JOBU is CHARACTER*1
130*> = 'U': Unitary matrix U is computed;
131*> = 'N': U is not computed.
132*> \endverbatim
133*>
134*> \param[in] JOBV
135*> \verbatim
136*> JOBV is CHARACTER*1
137*> = 'V': Unitary matrix V is computed;
138*> = 'N': V is not computed.
139*> \endverbatim
140*>
141*> \param[in] JOBQ
142*> \verbatim
143*> JOBQ is CHARACTER*1
144*> = 'Q': Unitary matrix Q is computed;
145*> = 'N': Q is not computed.
146*> \endverbatim
147*>
148*> \param[in] M
149*> \verbatim
150*> M is INTEGER
151*> The number of rows of the matrix A. M >= 0.
152*> \endverbatim
153*>
154*> \param[in] N
155*> \verbatim
156*> N is INTEGER
157*> The number of columns of the matrices A and B. N >= 0.
158*> \endverbatim
159*>
160*> \param[in] P
161*> \verbatim
162*> P is INTEGER
163*> The number of rows of the matrix B. P >= 0.
164*> \endverbatim
165*>
166*> \param[out] K
167*> \verbatim
168*> K is INTEGER
169*> \endverbatim
170*>
171*> \param[out] L
172*> \verbatim
173*> L is INTEGER
174*>
175*> On exit, K and L specify the dimension of the subblocks
176*> described in Purpose.
177*> K + L = effective numerical rank of (A**H,B**H)**H.
178*> \endverbatim
179*>
180*> \param[in,out] A
181*> \verbatim
182*> A is COMPLEX array, dimension (LDA,N)
183*> On entry, the M-by-N matrix A.
184*> On exit, A contains the triangular matrix R, or part of R.
185*> See Purpose for details.
186*> \endverbatim
187*>
188*> \param[in] LDA
189*> \verbatim
190*> LDA is INTEGER
191*> The leading dimension of the array A. LDA >= max(1,M).
192*> \endverbatim
193*>
194*> \param[in,out] B
195*> \verbatim
196*> B is COMPLEX array, dimension (LDB,N)
197*> On entry, the P-by-N matrix B.
198*> On exit, B contains part of the triangular matrix R if
199*> M-K-L < 0. See Purpose for details.
200*> \endverbatim
201*>
202*> \param[in] LDB
203*> \verbatim
204*> LDB is INTEGER
205*> The leading dimension of the array B. LDB >= max(1,P).
206*> \endverbatim
207*>
208*> \param[out] ALPHA
209*> \verbatim
210*> ALPHA is REAL array, dimension (N)
211*> \endverbatim
212*>
213*> \param[out] BETA
214*> \verbatim
215*> BETA is REAL array, dimension (N)
216*>
217*> On exit, ALPHA and BETA contain the generalized singular
218*> value pairs of A and B;
219*> ALPHA(1:K) = 1,
220*> BETA(1:K) = 0,
221*> and if M-K-L >= 0,
222*> ALPHA(K+1:K+L) = C,
223*> BETA(K+1:K+L) = S,
224*> or if M-K-L < 0,
225*> ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
226*> BETA(K+1:M) =S, BETA(M+1:K+L) =1
227*> and
228*> ALPHA(K+L+1:N) = 0
229*> BETA(K+L+1:N) = 0
230*> \endverbatim
231*>
232*> \param[out] U
233*> \verbatim
234*> U is COMPLEX array, dimension (LDU,M)
235*> If JOBU = 'U', U contains the M-by-M unitary matrix U.
236*> If JOBU = 'N', U is not referenced.
237*> \endverbatim
238*>
239*> \param[in] LDU
240*> \verbatim
241*> LDU is INTEGER
242*> The leading dimension of the array U. LDU >= max(1,M) if
243*> JOBU = 'U'; LDU >= 1 otherwise.
244*> \endverbatim
245*>
246*> \param[out] V
247*> \verbatim
248*> V is COMPLEX array, dimension (LDV,P)
249*> If JOBV = 'V', V contains the P-by-P unitary matrix V.
250*> If JOBV = 'N', V is not referenced.
251*> \endverbatim
252*>
253*> \param[in] LDV
254*> \verbatim
255*> LDV is INTEGER
256*> The leading dimension of the array V. LDV >= max(1,P) if
257*> JOBV = 'V'; LDV >= 1 otherwise.
258*> \endverbatim
259*>
260*> \param[out] Q
261*> \verbatim
262*> Q is COMPLEX array, dimension (LDQ,N)
263*> If JOBQ = 'Q', Q contains the N-by-N unitary matrix Q.
264*> If JOBQ = 'N', Q is not referenced.
265*> \endverbatim
266*>
267*> \param[in] LDQ
268*> \verbatim
269*> LDQ is INTEGER
270*> The leading dimension of the array Q. LDQ >= max(1,N) if
271*> JOBQ = 'Q'; LDQ >= 1 otherwise.
272*> \endverbatim
273*>
274*> \param[out] WORK
275*> \verbatim
276*> WORK is COMPLEX array, dimension (max(3*N,M,P)+N)
277*> \endverbatim
278*>
279*> \param[out] RWORK
280*> \verbatim
281*> RWORK is REAL array, dimension (2*N)
282*> \endverbatim
283*>
284*> \param[out] IWORK
285*> \verbatim
286*> IWORK is INTEGER array, dimension (N)
287*> On exit, IWORK stores the sorting information. More
288*> precisely, the following loop will sort ALPHA
289*> for I = K+1, min(M,K+L)
290*> swap ALPHA(I) and ALPHA(IWORK(I))
291*> endfor
292*> such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
293*> \endverbatim
294*>
295*> \param[out] INFO
296*> \verbatim
297*> INFO is INTEGER
298*> = 0: successful exit.
299*> < 0: if INFO = -i, the i-th argument had an illegal value.
300*> > 0: if INFO = 1, the Jacobi-type procedure failed to
301*> converge. For further details, see subroutine CTGSJA.
302*> \endverbatim
303*
304*> \par Internal Parameters:
305* =========================
306*>
307*> \verbatim
308*> TOLA REAL
309*> TOLB REAL
310*> TOLA and TOLB are the thresholds to determine the effective
311*> rank of (A**H,B**H)**H. Generally, they are set to
312*> TOLA = MAX(M,N)*norm(A)*MACHEPS,
313*> TOLB = MAX(P,N)*norm(B)*MACHEPS.
314*> The size of TOLA and TOLB may affect the size of backward
315*> errors of the decomposition.
316*> \endverbatim
317*
318* Authors:
319* ========
320*
321*> \author Univ. of Tennessee
322*> \author Univ. of California Berkeley
323*> \author Univ. of Colorado Denver
324*> \author NAG Ltd.
325*
326*> \ingroup complexOTHERsing
327*
328*> \par Contributors:
329* ==================
330*>
331*> Ming Gu and Huan Ren, Computer Science Division, University of
332*> California at Berkeley, USA
333*>
334* =====================================================================
335 SUBROUTINE cggsvd( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
336 $ LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
337 $ RWORK, IWORK, INFO )
338*
339* -- LAPACK driver routine --
340* -- LAPACK is a software package provided by Univ. of Tennessee, --
341* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
342*
343* .. Scalar Arguments ..
344 CHARACTER JOBQ, JOBU, JOBV
345 INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
346* ..
347* .. Array Arguments ..
348 INTEGER IWORK( * )
349 REAL ALPHA( * ), BETA( * ), RWORK( * )
350 COMPLEX A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
351 $ u( ldu, * ), v( ldv, * ), work( * )
352* ..
353*
354* =====================================================================
355*
356* .. Local Scalars ..
357 LOGICAL WANTQ, WANTU, WANTV
358 INTEGER I, IBND, ISUB, J, NCYCLE
359 REAL ANORM, BNORM, SMAX, TEMP, TOLA, TOLB, ULP, UNFL
360* ..
361* .. External Functions ..
362 LOGICAL LSAME
363 REAL CLANGE, SLAMCH
364 EXTERNAL lsame, clange, slamch
365* ..
366* .. External Subroutines ..
367 EXTERNAL cggsvp, ctgsja, scopy, xerbla
368* ..
369* .. Intrinsic Functions ..
370 INTRINSIC max, min
371* ..
372* .. Executable Statements ..
373*
374* Decode and test the input parameters
375*
376 wantu = lsame( jobu, 'U' )
377 wantv = lsame( jobv, 'V' )
378 wantq = lsame( jobq, 'Q' )
379*
380 info = 0
381 IF( .NOT.( wantu .OR. lsame( jobu, 'N' ) ) ) THEN
382 info = -1
383 ELSE IF( .NOT.( wantv .OR. lsame( jobv, 'N' ) ) ) THEN
384 info = -2
385 ELSE IF( .NOT.( wantq .OR. lsame( jobq, 'N' ) ) ) THEN
386 info = -3
387 ELSE IF( m.LT.0 ) THEN
388 info = -4
389 ELSE IF( n.LT.0 ) THEN
390 info = -5
391 ELSE IF( p.LT.0 ) THEN
392 info = -6
393 ELSE IF( lda.LT.max( 1, m ) ) THEN
394 info = -10
395 ELSE IF( ldb.LT.max( 1, p ) ) THEN
396 info = -12
397 ELSE IF( ldu.LT.1 .OR. ( wantu .AND. ldu.LT.m ) ) THEN
398 info = -16
399 ELSE IF( ldv.LT.1 .OR. ( wantv .AND. ldv.LT.p ) ) THEN
400 info = -18
401 ELSE IF( ldq.LT.1 .OR. ( wantq .AND. ldq.LT.n ) ) THEN
402 info = -20
403 END IF
404 IF( info.NE.0 ) THEN
405 CALL xerbla( 'CGGSVD', -info )
406 RETURN
407 END IF
408*
409* Compute the Frobenius norm of matrices A and B
410*
411 anorm = clange( '1', m, n, a, lda, rwork )
412 bnorm = clange( '1', p, n, b, ldb, rwork )
413*
414* Get machine precision and set up threshold for determining
415* the effective numerical rank of the matrices A and B.
416*
417 ulp = slamch( 'Precision' )
418 unfl = slamch( 'Safe Minimum' )
419 tola = max( m, n )*max( anorm, unfl )*ulp
420 tolb = max( p, n )*max( bnorm, unfl )*ulp
421*
422 CALL cggsvp( jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola,
423 $ tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, rwork,
424 $ work, work( n+1 ), info )
425*
426* Compute the GSVD of two upper "triangular" matrices
427*
428 CALL ctgsja( jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb,
429 $ tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq,
430 $ work, ncycle, info )
431*
432* Sort the singular values and store the pivot indices in IWORK
433* Copy ALPHA to RWORK, then sort ALPHA in RWORK
434*
435 CALL scopy( n, alpha, 1, rwork, 1 )
436 ibnd = min( l, m-k )
437 DO 20 i = 1, ibnd
438*
439* Scan for largest ALPHA(K+I)
440*
441 isub = i
442 smax = rwork( k+i )
443 DO 10 j = i + 1, ibnd
444 temp = rwork( k+j )
445 IF( temp.GT.smax ) THEN
446 isub = j
447 smax = temp
448 END IF
449 10 CONTINUE
450 IF( isub.NE.i ) THEN
451 rwork( k+isub ) = rwork( k+i )
452 rwork( k+i ) = smax
453 iwork( k+i ) = k + isub
454 ELSE
455 iwork( k+i ) = k + i
456 END IF
457 20 CONTINUE
458*
459 RETURN
460*
461* End of CGGSVD
462*
463 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine cggsvd(jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha, beta, u, ldu, v, ldv, q, ldq, work, rwork, iwork, info)
CGGSVD computes the singular value decomposition (SVD) for OTHER matrices
Definition cggsvd.f:338
subroutine cggsvp(jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, rwork, tau, work, info)
CGGSVP
Definition cggsvp.f:262
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
Definition scopy.f:82
subroutine ctgsja(jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)
CTGSJA
Definition ctgsja.f:379