LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cggsvd.f
Go to the documentation of this file.
1*> \brief <b> CGGSVD computes the singular value decomposition (SVD) for OTHER matrices</b>
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download CGGSVD + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cggsvd.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cggsvd.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cggsvd.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE CGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
20* LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
21* RWORK, IWORK, INFO )
22*
23* .. Scalar Arguments ..
24* CHARACTER JOBQ, JOBU, JOBV
25* INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
26* ..
27* .. Array Arguments ..
28* INTEGER IWORK( * )
29* REAL ALPHA( * ), BETA( * ), RWORK( * )
30* COMPLEX A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
31* $ U( LDU, * ), V( LDV, * ), WORK( * )
32* ..
33*
34*
35*> \par Purpose:
36* =============
37*>
38*> \verbatim
39*>
40*> This routine is deprecated and has been replaced by routine CGGSVD3.
41*>
42*> CGGSVD computes the generalized singular value decomposition (GSVD)
43*> of an M-by-N complex matrix A and P-by-N complex matrix B:
44*>
45*> U**H*A*Q = D1*( 0 R ), V**H*B*Q = D2*( 0 R )
46*>
47*> where U, V and Q are unitary matrices.
48*> Let K+L = the effective numerical rank of the
49*> matrix (A**H,B**H)**H, then R is a (K+L)-by-(K+L) nonsingular upper
50*> triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) "diagonal"
51*> matrices and of the following structures, respectively:
52*>
53*> If M-K-L >= 0,
54*>
55*> K L
56*> D1 = K ( I 0 )
57*> L ( 0 C )
58*> M-K-L ( 0 0 )
59*>
60*> K L
61*> D2 = L ( 0 S )
62*> P-L ( 0 0 )
63*>
64*> N-K-L K L
65*> ( 0 R ) = K ( 0 R11 R12 )
66*> L ( 0 0 R22 )
67*>
68*> where
69*>
70*> C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
71*> S = diag( BETA(K+1), ... , BETA(K+L) ),
72*> C**2 + S**2 = I.
73*>
74*> R is stored in A(1:K+L,N-K-L+1:N) on exit.
75*>
76*> If M-K-L < 0,
77*>
78*> K M-K K+L-M
79*> D1 = K ( I 0 0 )
80*> M-K ( 0 C 0 )
81*>
82*> K M-K K+L-M
83*> D2 = M-K ( 0 S 0 )
84*> K+L-M ( 0 0 I )
85*> P-L ( 0 0 0 )
86*>
87*> N-K-L K M-K K+L-M
88*> ( 0 R ) = K ( 0 R11 R12 R13 )
89*> M-K ( 0 0 R22 R23 )
90*> K+L-M ( 0 0 0 R33 )
91*>
92*> where
93*>
94*> C = diag( ALPHA(K+1), ... , ALPHA(M) ),
95*> S = diag( BETA(K+1), ... , BETA(M) ),
96*> C**2 + S**2 = I.
97*>
98*> (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
99*> ( 0 R22 R23 )
100*> in B(M-K+1:L,N+M-K-L+1:N) on exit.
101*>
102*> The routine computes C, S, R, and optionally the unitary
103*> transformation matrices U, V and Q.
104*>
105*> In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
106*> A and B implicitly gives the SVD of A*inv(B):
107*> A*inv(B) = U*(D1*inv(D2))*V**H.
108*> If ( A**H,B**H)**H has orthonormal columns, then the GSVD of A and B is also
109*> equal to the CS decomposition of A and B. Furthermore, the GSVD can
110*> be used to derive the solution of the eigenvalue problem:
111*> A**H*A x = lambda* B**H*B x.
112*> In some literature, the GSVD of A and B is presented in the form
113*> U**H*A*X = ( 0 D1 ), V**H*B*X = ( 0 D2 )
114*> where U and V are orthogonal and X is nonsingular, and D1 and D2 are
115*> ``diagonal''. The former GSVD form can be converted to the latter
116*> form by taking the nonsingular matrix X as
117*>
118*> X = Q*( I 0 )
119*> ( 0 inv(R) )
120*> \endverbatim
121*
122* Arguments:
123* ==========
124*
125*> \param[in] JOBU
126*> \verbatim
127*> JOBU is CHARACTER*1
128*> = 'U': Unitary matrix U is computed;
129*> = 'N': U is not computed.
130*> \endverbatim
131*>
132*> \param[in] JOBV
133*> \verbatim
134*> JOBV is CHARACTER*1
135*> = 'V': Unitary matrix V is computed;
136*> = 'N': V is not computed.
137*> \endverbatim
138*>
139*> \param[in] JOBQ
140*> \verbatim
141*> JOBQ is CHARACTER*1
142*> = 'Q': Unitary matrix Q is computed;
143*> = 'N': Q is not computed.
144*> \endverbatim
145*>
146*> \param[in] M
147*> \verbatim
148*> M is INTEGER
149*> The number of rows of the matrix A. M >= 0.
150*> \endverbatim
151*>
152*> \param[in] N
153*> \verbatim
154*> N is INTEGER
155*> The number of columns of the matrices A and B. N >= 0.
156*> \endverbatim
157*>
158*> \param[in] P
159*> \verbatim
160*> P is INTEGER
161*> The number of rows of the matrix B. P >= 0.
162*> \endverbatim
163*>
164*> \param[out] K
165*> \verbatim
166*> K is INTEGER
167*> \endverbatim
168*>
169*> \param[out] L
170*> \verbatim
171*> L is INTEGER
172*>
173*> On exit, K and L specify the dimension of the subblocks
174*> described in Purpose.
175*> K + L = effective numerical rank of (A**H,B**H)**H.
176*> \endverbatim
177*>
178*> \param[in,out] A
179*> \verbatim
180*> A is COMPLEX array, dimension (LDA,N)
181*> On entry, the M-by-N matrix A.
182*> On exit, A contains the triangular matrix R, or part of R.
183*> See Purpose for details.
184*> \endverbatim
185*>
186*> \param[in] LDA
187*> \verbatim
188*> LDA is INTEGER
189*> The leading dimension of the array A. LDA >= max(1,M).
190*> \endverbatim
191*>
192*> \param[in,out] B
193*> \verbatim
194*> B is COMPLEX array, dimension (LDB,N)
195*> On entry, the P-by-N matrix B.
196*> On exit, B contains part of the triangular matrix R if
197*> M-K-L < 0. See Purpose for details.
198*> \endverbatim
199*>
200*> \param[in] LDB
201*> \verbatim
202*> LDB is INTEGER
203*> The leading dimension of the array B. LDB >= max(1,P).
204*> \endverbatim
205*>
206*> \param[out] ALPHA
207*> \verbatim
208*> ALPHA is REAL array, dimension (N)
209*> \endverbatim
210*>
211*> \param[out] BETA
212*> \verbatim
213*> BETA is REAL array, dimension (N)
214*>
215*> On exit, ALPHA and BETA contain the generalized singular
216*> value pairs of A and B;
217*> ALPHA(1:K) = 1,
218*> BETA(1:K) = 0,
219*> and if M-K-L >= 0,
220*> ALPHA(K+1:K+L) = C,
221*> BETA(K+1:K+L) = S,
222*> or if M-K-L < 0,
223*> ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
224*> BETA(K+1:M) =S, BETA(M+1:K+L) =1
225*> and
226*> ALPHA(K+L+1:N) = 0
227*> BETA(K+L+1:N) = 0
228*> \endverbatim
229*>
230*> \param[out] U
231*> \verbatim
232*> U is COMPLEX array, dimension (LDU,M)
233*> If JOBU = 'U', U contains the M-by-M unitary matrix U.
234*> If JOBU = 'N', U is not referenced.
235*> \endverbatim
236*>
237*> \param[in] LDU
238*> \verbatim
239*> LDU is INTEGER
240*> The leading dimension of the array U. LDU >= max(1,M) if
241*> JOBU = 'U'; LDU >= 1 otherwise.
242*> \endverbatim
243*>
244*> \param[out] V
245*> \verbatim
246*> V is COMPLEX array, dimension (LDV,P)
247*> If JOBV = 'V', V contains the P-by-P unitary matrix V.
248*> If JOBV = 'N', V is not referenced.
249*> \endverbatim
250*>
251*> \param[in] LDV
252*> \verbatim
253*> LDV is INTEGER
254*> The leading dimension of the array V. LDV >= max(1,P) if
255*> JOBV = 'V'; LDV >= 1 otherwise.
256*> \endverbatim
257*>
258*> \param[out] Q
259*> \verbatim
260*> Q is COMPLEX array, dimension (LDQ,N)
261*> If JOBQ = 'Q', Q contains the N-by-N unitary matrix Q.
262*> If JOBQ = 'N', Q is not referenced.
263*> \endverbatim
264*>
265*> \param[in] LDQ
266*> \verbatim
267*> LDQ is INTEGER
268*> The leading dimension of the array Q. LDQ >= max(1,N) if
269*> JOBQ = 'Q'; LDQ >= 1 otherwise.
270*> \endverbatim
271*>
272*> \param[out] WORK
273*> \verbatim
274*> WORK is COMPLEX array, dimension (max(3*N,M,P)+N)
275*> \endverbatim
276*>
277*> \param[out] RWORK
278*> \verbatim
279*> RWORK is REAL array, dimension (2*N)
280*> \endverbatim
281*>
282*> \param[out] IWORK
283*> \verbatim
284*> IWORK is INTEGER array, dimension (N)
285*> On exit, IWORK stores the sorting information. More
286*> precisely, the following loop will sort ALPHA
287*> for I = K+1, min(M,K+L)
288*> swap ALPHA(I) and ALPHA(IWORK(I))
289*> endfor
290*> such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
291*> \endverbatim
292*>
293*> \param[out] INFO
294*> \verbatim
295*> INFO is INTEGER
296*> = 0: successful exit.
297*> < 0: if INFO = -i, the i-th argument had an illegal value.
298*> > 0: if INFO = 1, the Jacobi-type procedure failed to
299*> converge. For further details, see subroutine CTGSJA.
300*> \endverbatim
301*
302*> \par Internal Parameters:
303* =========================
304*>
305*> \verbatim
306*> TOLA REAL
307*> TOLB REAL
308*> TOLA and TOLB are the thresholds to determine the effective
309*> rank of (A**H,B**H)**H. Generally, they are set to
310*> TOLA = MAX(M,N)*norm(A)*MACHEPS,
311*> TOLB = MAX(P,N)*norm(B)*MACHEPS.
312*> The size of TOLA and TOLB may affect the size of backward
313*> errors of the decomposition.
314*> \endverbatim
315*
316* Authors:
317* ========
318*
319*> \author Univ. of Tennessee
320*> \author Univ. of California Berkeley
321*> \author Univ. of Colorado Denver
322*> \author NAG Ltd.
323*
324*> \ingroup complexOTHERsing
325*
326*> \par Contributors:
327* ==================
328*>
329*> Ming Gu and Huan Ren, Computer Science Division, University of
330*> California at Berkeley, USA
331*>
332* =====================================================================
333 SUBROUTINE cggsvd( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
334 $ LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
335 $ RWORK, IWORK, INFO )
336*
337* -- LAPACK driver routine --
338* -- LAPACK is a software package provided by Univ. of Tennessee, --
339* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
340*
341* .. Scalar Arguments ..
342 CHARACTER JOBQ, JOBU, JOBV
343 INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
344* ..
345* .. Array Arguments ..
346 INTEGER IWORK( * )
347 REAL ALPHA( * ), BETA( * ), RWORK( * )
348 COMPLEX A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
349 $ u( ldu, * ), v( ldv, * ), work( * )
350* ..
351*
352* =====================================================================
353*
354* .. Local Scalars ..
355 LOGICAL WANTQ, WANTU, WANTV
356 INTEGER I, IBND, ISUB, J, NCYCLE
357 REAL ANORM, BNORM, SMAX, TEMP, TOLA, TOLB, ULP, UNFL
358* ..
359* .. External Functions ..
360 LOGICAL LSAME
361 REAL CLANGE, SLAMCH
362 EXTERNAL lsame, clange, slamch
363* ..
364* .. External Subroutines ..
365 EXTERNAL cggsvp, ctgsja, scopy, xerbla
366* ..
367* .. Intrinsic Functions ..
368 INTRINSIC max, min
369* ..
370* .. Executable Statements ..
371*
372* Decode and test the input parameters
373*
374 wantu = lsame( jobu, 'U' )
375 wantv = lsame( jobv, 'V' )
376 wantq = lsame( jobq, 'Q' )
377*
378 info = 0
379 IF( .NOT.( wantu .OR. lsame( jobu, 'N' ) ) ) THEN
380 info = -1
381 ELSE IF( .NOT.( wantv .OR. lsame( jobv, 'N' ) ) ) THEN
382 info = -2
383 ELSE IF( .NOT.( wantq .OR. lsame( jobq, 'N' ) ) ) THEN
384 info = -3
385 ELSE IF( m.LT.0 ) THEN
386 info = -4
387 ELSE IF( n.LT.0 ) THEN
388 info = -5
389 ELSE IF( p.LT.0 ) THEN
390 info = -6
391 ELSE IF( lda.LT.max( 1, m ) ) THEN
392 info = -10
393 ELSE IF( ldb.LT.max( 1, p ) ) THEN
394 info = -12
395 ELSE IF( ldu.LT.1 .OR. ( wantu .AND. ldu.LT.m ) ) THEN
396 info = -16
397 ELSE IF( ldv.LT.1 .OR. ( wantv .AND. ldv.LT.p ) ) THEN
398 info = -18
399 ELSE IF( ldq.LT.1 .OR. ( wantq .AND. ldq.LT.n ) ) THEN
400 info = -20
401 END IF
402 IF( info.NE.0 ) THEN
403 CALL xerbla( 'CGGSVD', -info )
404 RETURN
405 END IF
406*
407* Compute the Frobenius norm of matrices A and B
408*
409 anorm = clange( '1', m, n, a, lda, rwork )
410 bnorm = clange( '1', p, n, b, ldb, rwork )
411*
412* Get machine precision and set up threshold for determining
413* the effective numerical rank of the matrices A and B.
414*
415 ulp = slamch( 'Precision' )
416 unfl = slamch( 'Safe Minimum' )
417 tola = max( m, n )*max( anorm, unfl )*ulp
418 tolb = max( p, n )*max( bnorm, unfl )*ulp
419*
420 CALL cggsvp( jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola,
421 $ tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, rwork,
422 $ work, work( n+1 ), info )
423*
424* Compute the GSVD of two upper "triangular" matrices
425*
426 CALL ctgsja( jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb,
427 $ tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq,
428 $ work, ncycle, info )
429*
430* Sort the singular values and store the pivot indices in IWORK
431* Copy ALPHA to RWORK, then sort ALPHA in RWORK
432*
433 CALL scopy( n, alpha, 1, rwork, 1 )
434 ibnd = min( l, m-k )
435 DO 20 i = 1, ibnd
436*
437* Scan for largest ALPHA(K+I)
438*
439 isub = i
440 smax = rwork( k+i )
441 DO 10 j = i + 1, ibnd
442 temp = rwork( k+j )
443 IF( temp.GT.smax ) THEN
444 isub = j
445 smax = temp
446 END IF
447 10 CONTINUE
448 IF( isub.NE.i ) THEN
449 rwork( k+isub ) = rwork( k+i )
450 rwork( k+i ) = smax
451 iwork( k+i ) = k + isub
452 ELSE
453 iwork( k+i ) = k + i
454 END IF
455 20 CONTINUE
456*
457 RETURN
458*
459* End of CGGSVD
460*
461 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine cggsvd(jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha, beta, u, ldu, v, ldv, q, ldq, work, rwork, iwork, info)
CGGSVD computes the singular value decomposition (SVD) for OTHER matrices
Definition cggsvd.f:336
subroutine cggsvp(jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, rwork, tau, work, info)
CGGSVP
Definition cggsvp.f:260
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
Definition scopy.f:82
subroutine ctgsja(jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)
CTGSJA
Definition ctgsja.f:377