LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cggsvd()

subroutine cggsvd ( character  jobu,
character  jobv,
character  jobq,
integer  m,
integer  n,
integer  p,
integer  k,
integer  l,
complex, dimension( lda, * )  a,
integer  lda,
complex, dimension( ldb, * )  b,
integer  ldb,
real, dimension( * )  alpha,
real, dimension( * )  beta,
complex, dimension( ldu, * )  u,
integer  ldu,
complex, dimension( ldv, * )  v,
integer  ldv,
complex, dimension( ldq, * )  q,
integer  ldq,
complex, dimension( * )  work,
real, dimension( * )  rwork,
integer, dimension( * )  iwork,
integer  info 
)

CGGSVD computes the singular value decomposition (SVD) for OTHER matrices

Download CGGSVD + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 This routine is deprecated and has been replaced by routine CGGSVD3.

 CGGSVD computes the generalized singular value decomposition (GSVD)
 of an M-by-N complex matrix A and P-by-N complex matrix B:

       U**H*A*Q = D1*( 0 R ),    V**H*B*Q = D2*( 0 R )

 where U, V and Q are unitary matrices.
 Let K+L = the effective numerical rank of the
 matrix (A**H,B**H)**H, then R is a (K+L)-by-(K+L) nonsingular upper
 triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) "diagonal"
 matrices and of the following structures, respectively:

 If M-K-L >= 0,

                     K  L
        D1 =     K ( I  0 )
                 L ( 0  C )
             M-K-L ( 0  0 )

                   K  L
        D2 =   L ( 0  S )
             P-L ( 0  0 )

                 N-K-L  K    L
   ( 0 R ) = K (  0   R11  R12 )
             L (  0    0   R22 )

 where

   C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
   S = diag( BETA(K+1),  ... , BETA(K+L) ),
   C**2 + S**2 = I.

   R is stored in A(1:K+L,N-K-L+1:N) on exit.

 If M-K-L < 0,

                   K M-K K+L-M
        D1 =   K ( I  0    0   )
             M-K ( 0  C    0   )

                     K M-K K+L-M
        D2 =   M-K ( 0  S    0  )
             K+L-M ( 0  0    I  )
               P-L ( 0  0    0  )

                    N-K-L  K   M-K  K+L-M
   ( 0 R ) =     K ( 0    R11  R12  R13  )
               M-K ( 0     0   R22  R23  )
             K+L-M ( 0     0    0   R33  )

 where

   C = diag( ALPHA(K+1), ... , ALPHA(M) ),
   S = diag( BETA(K+1),  ... , BETA(M) ),
   C**2 + S**2 = I.

   (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
   ( 0  R22 R23 )
   in B(M-K+1:L,N+M-K-L+1:N) on exit.

 The routine computes C, S, R, and optionally the unitary
 transformation matrices U, V and Q.

 In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
 A and B implicitly gives the SVD of A*inv(B):
                      A*inv(B) = U*(D1*inv(D2))*V**H.
 If ( A**H,B**H)**H has orthonormal columns, then the GSVD of A and B is also
 equal to the CS decomposition of A and B. Furthermore, the GSVD can
 be used to derive the solution of the eigenvalue problem:
                      A**H*A x = lambda* B**H*B x.
 In some literature, the GSVD of A and B is presented in the form
                  U**H*A*X = ( 0 D1 ),   V**H*B*X = ( 0 D2 )
 where U and V are orthogonal and X is nonsingular, and D1 and D2 are
 ``diagonal''.  The former GSVD form can be converted to the latter
 form by taking the nonsingular matrix X as

                       X = Q*(  I   0    )
                             (  0 inv(R) )
Parameters
[in]JOBU
          JOBU is CHARACTER*1
          = 'U':  Unitary matrix U is computed;
          = 'N':  U is not computed.
[in]JOBV
          JOBV is CHARACTER*1
          = 'V':  Unitary matrix V is computed;
          = 'N':  V is not computed.
[in]JOBQ
          JOBQ is CHARACTER*1
          = 'Q':  Unitary matrix Q is computed;
          = 'N':  Q is not computed.
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrices A and B.  N >= 0.
[in]P
          P is INTEGER
          The number of rows of the matrix B.  P >= 0.
[out]K
          K is INTEGER
[out]L
          L is INTEGER

          On exit, K and L specify the dimension of the subblocks
          described in Purpose.
          K + L = effective numerical rank of (A**H,B**H)**H.
[in,out]A
          A is COMPLEX array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, A contains the triangular matrix R, or part of R.
          See Purpose for details.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,M).
[in,out]B
          B is COMPLEX array, dimension (LDB,N)
          On entry, the P-by-N matrix B.
          On exit, B contains part of the triangular matrix R if
          M-K-L < 0.  See Purpose for details.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,P).
[out]ALPHA
          ALPHA is REAL array, dimension (N)
[out]BETA
          BETA is REAL array, dimension (N)

          On exit, ALPHA and BETA contain the generalized singular
          value pairs of A and B;
            ALPHA(1:K) = 1,
            BETA(1:K)  = 0,
          and if M-K-L >= 0,
            ALPHA(K+1:K+L) = C,
            BETA(K+1:K+L)  = S,
          or if M-K-L < 0,
            ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
            BETA(K+1:M) =S, BETA(M+1:K+L) =1
          and
            ALPHA(K+L+1:N) = 0
            BETA(K+L+1:N)  = 0
[out]U
          U is COMPLEX array, dimension (LDU,M)
          If JOBU = 'U', U contains the M-by-M unitary matrix U.
          If JOBU = 'N', U is not referenced.
[in]LDU
          LDU is INTEGER
          The leading dimension of the array U. LDU >= max(1,M) if
          JOBU = 'U'; LDU >= 1 otherwise.
[out]V
          V is COMPLEX array, dimension (LDV,P)
          If JOBV = 'V', V contains the P-by-P unitary matrix V.
          If JOBV = 'N', V is not referenced.
[in]LDV
          LDV is INTEGER
          The leading dimension of the array V. LDV >= max(1,P) if
          JOBV = 'V'; LDV >= 1 otherwise.
[out]Q
          Q is COMPLEX array, dimension (LDQ,N)
          If JOBQ = 'Q', Q contains the N-by-N unitary matrix Q.
          If JOBQ = 'N', Q is not referenced.
[in]LDQ
          LDQ is INTEGER
          The leading dimension of the array Q. LDQ >= max(1,N) if
          JOBQ = 'Q'; LDQ >= 1 otherwise.
[out]WORK
          WORK is COMPLEX array, dimension (max(3*N,M,P)+N)
[out]RWORK
          RWORK is REAL array, dimension (2*N)
[out]IWORK
          IWORK is INTEGER array, dimension (N)
          On exit, IWORK stores the sorting information. More
          precisely, the following loop will sort ALPHA
             for I = K+1, min(M,K+L)
                 swap ALPHA(I) and ALPHA(IWORK(I))
             endfor
          such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
[out]INFO
          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  if INFO = 1, the Jacobi-type procedure failed to
                converge.  For further details, see subroutine CTGSJA.
Internal Parameters:
  TOLA    REAL
  TOLB    REAL
          TOLA and TOLB are the thresholds to determine the effective
          rank of (A**H,B**H)**H. Generally, they are set to
                   TOLA = MAX(M,N)*norm(A)*MACHEPS,
                   TOLB = MAX(P,N)*norm(B)*MACHEPS.
          The size of TOLA and TOLB may affect the size of backward
          errors of the decomposition.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Ming Gu and Huan Ren, Computer Science Division, University of California at Berkeley, USA

Definition at line 335 of file cggsvd.f.

338*
339* -- LAPACK driver routine --
340* -- LAPACK is a software package provided by Univ. of Tennessee, --
341* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
342*
343* .. Scalar Arguments ..
344 CHARACTER JOBQ, JOBU, JOBV
345 INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
346* ..
347* .. Array Arguments ..
348 INTEGER IWORK( * )
349 REAL ALPHA( * ), BETA( * ), RWORK( * )
350 COMPLEX A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
351 $ U( LDU, * ), V( LDV, * ), WORK( * )
352* ..
353*
354* =====================================================================
355*
356* .. Local Scalars ..
357 LOGICAL WANTQ, WANTU, WANTV
358 INTEGER I, IBND, ISUB, J, NCYCLE
359 REAL ANORM, BNORM, SMAX, TEMP, TOLA, TOLB, ULP, UNFL
360* ..
361* .. External Functions ..
362 LOGICAL LSAME
363 REAL CLANGE, SLAMCH
364 EXTERNAL lsame, clange, slamch
365* ..
366* .. External Subroutines ..
367 EXTERNAL cggsvp, ctgsja, scopy, xerbla
368* ..
369* .. Intrinsic Functions ..
370 INTRINSIC max, min
371* ..
372* .. Executable Statements ..
373*
374* Decode and test the input parameters
375*
376 wantu = lsame( jobu, 'U' )
377 wantv = lsame( jobv, 'V' )
378 wantq = lsame( jobq, 'Q' )
379*
380 info = 0
381 IF( .NOT.( wantu .OR. lsame( jobu, 'N' ) ) ) THEN
382 info = -1
383 ELSE IF( .NOT.( wantv .OR. lsame( jobv, 'N' ) ) ) THEN
384 info = -2
385 ELSE IF( .NOT.( wantq .OR. lsame( jobq, 'N' ) ) ) THEN
386 info = -3
387 ELSE IF( m.LT.0 ) THEN
388 info = -4
389 ELSE IF( n.LT.0 ) THEN
390 info = -5
391 ELSE IF( p.LT.0 ) THEN
392 info = -6
393 ELSE IF( lda.LT.max( 1, m ) ) THEN
394 info = -10
395 ELSE IF( ldb.LT.max( 1, p ) ) THEN
396 info = -12
397 ELSE IF( ldu.LT.1 .OR. ( wantu .AND. ldu.LT.m ) ) THEN
398 info = -16
399 ELSE IF( ldv.LT.1 .OR. ( wantv .AND. ldv.LT.p ) ) THEN
400 info = -18
401 ELSE IF( ldq.LT.1 .OR. ( wantq .AND. ldq.LT.n ) ) THEN
402 info = -20
403 END IF
404 IF( info.NE.0 ) THEN
405 CALL xerbla( 'CGGSVD', -info )
406 RETURN
407 END IF
408*
409* Compute the Frobenius norm of matrices A and B
410*
411 anorm = clange( '1', m, n, a, lda, rwork )
412 bnorm = clange( '1', p, n, b, ldb, rwork )
413*
414* Get machine precision and set up threshold for determining
415* the effective numerical rank of the matrices A and B.
416*
417 ulp = slamch( 'Precision' )
418 unfl = slamch( 'Safe Minimum' )
419 tola = max( m, n )*max( anorm, unfl )*ulp
420 tolb = max( p, n )*max( bnorm, unfl )*ulp
421*
422 CALL cggsvp( jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola,
423 $ tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, rwork,
424 $ work, work( n+1 ), info )
425*
426* Compute the GSVD of two upper "triangular" matrices
427*
428 CALL ctgsja( jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb,
429 $ tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq,
430 $ work, ncycle, info )
431*
432* Sort the singular values and store the pivot indices in IWORK
433* Copy ALPHA to RWORK, then sort ALPHA in RWORK
434*
435 CALL scopy( n, alpha, 1, rwork, 1 )
436 ibnd = min( l, m-k )
437 DO 20 i = 1, ibnd
438*
439* Scan for largest ALPHA(K+I)
440*
441 isub = i
442 smax = rwork( k+i )
443 DO 10 j = i + 1, ibnd
444 temp = rwork( k+j )
445 IF( temp.GT.smax ) THEN
446 isub = j
447 smax = temp
448 END IF
449 10 CONTINUE
450 IF( isub.NE.i ) THEN
451 rwork( k+isub ) = rwork( k+i )
452 rwork( k+i ) = smax
453 iwork( k+i ) = k + isub
454 ELSE
455 iwork( k+i ) = k + i
456 END IF
457 20 CONTINUE
458*
459 RETURN
460*
461* End of CGGSVD
462*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine cggsvp(jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, rwork, tau, work, info)
CGGSVP
Definition cggsvp.f:262
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
Definition scopy.f:82
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function clange(norm, m, n, a, lda, work)
CLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition clange.f:115
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine ctgsja(jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)
CTGSJA
Definition ctgsja.f:379
Here is the call graph for this function: