LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
|
subroutine stplqt2 | ( | integer | m, |
integer | n, | ||
integer | l, | ||
real, dimension( lda, * ) | a, | ||
integer | lda, | ||
real, dimension( ldb, * ) | b, | ||
integer | ldb, | ||
real, dimension( ldt, * ) | t, | ||
integer | ldt, | ||
integer | info | ||
) |
STPLQT2 computes a LQ factorization of a real or complex "triangular-pentagonal" matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q.
Download STPLQT2 + dependencies [TGZ] [ZIP] [TXT]
STPLQT2 computes a LQ a factorization of a real "triangular-pentagonal" matrix C, which is composed of a triangular block A and pentagonal block B, using the compact WY representation for Q.
[in] | M | M is INTEGER The total number of rows of the matrix B. M >= 0. |
[in] | N | N is INTEGER The number of columns of the matrix B, and the order of the triangular matrix A. N >= 0. |
[in] | L | L is INTEGER The number of rows of the lower trapezoidal part of B. MIN(M,N) >= L >= 0. See Further Details. |
[in,out] | A | A is REAL array, dimension (LDA,M) On entry, the lower triangular M-by-M matrix A. On exit, the elements on and below the diagonal of the array contain the lower triangular matrix L. |
[in] | LDA | LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). |
[in,out] | B | B is REAL array, dimension (LDB,N) On entry, the pentagonal M-by-N matrix B. The first N-L columns are rectangular, and the last L columns are lower trapezoidal. On exit, B contains the pentagonal matrix V. See Further Details. |
[in] | LDB | LDB is INTEGER The leading dimension of the array B. LDB >= max(1,M). |
[out] | T | T is REAL array, dimension (LDT,M) The N-by-N upper triangular factor T of the block reflector. See Further Details. |
[in] | LDT | LDT is INTEGER The leading dimension of the array T. LDT >= max(1,M) |
[out] | INFO | INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value |
The input matrix C is a M-by-(M+N) matrix C = [ A ][ B ] where A is an lower triangular M-by-M matrix, and B is M-by-N pentagonal matrix consisting of a M-by-(N-L) rectangular matrix B1 left of a M-by-L upper trapezoidal matrix B2: B = [ B1 ][ B2 ] [ B1 ] <- M-by-(N-L) rectangular [ B2 ] <- M-by-L lower trapezoidal. The lower trapezoidal matrix B2 consists of the first L columns of a N-by-N lower triangular matrix, where 0 <= L <= MIN(M,N). If L=0, B is rectangular M-by-N; if M=L=N, B is lower triangular. The matrix W stores the elementary reflectors H(i) in the i-th row above the diagonal (of A) in the M-by-(M+N) input matrix C C = [ A ][ B ] [ A ] <- lower triangular M-by-M [ B ] <- M-by-N pentagonal so that W can be represented as W = [ I ][ V ] [ I ] <- identity, M-by-M [ V ] <- M-by-N, same form as B. Thus, all of information needed for W is contained on exit in B, which we call V above. Note that V has the same form as B; that is, W = [ V1 ][ V2 ] [ V1 ] <- M-by-(N-L) rectangular [ V2 ] <- M-by-L lower trapezoidal. The rows of V represent the vectors which define the H(i)'s. The (M+N)-by-(M+N) block reflector H is then given by H = I - W**T * T * W where W^H is the conjugate transpose of W and T is the upper triangular factor of the block reflector.
Definition at line 176 of file stplqt2.f.