LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine dtplqt2 | ( | integer | m, |
integer | n, | ||
integer | l, | ||
double precision, dimension( lda, * ) | a, | ||
integer | lda, | ||
double precision, dimension( ldb, * ) | b, | ||
integer | ldb, | ||
double precision, dimension( ldt, * ) | t, | ||
integer | ldt, | ||
integer | info ) |
DTPLQT2 computes a LQ factorization of a real or complex "triangular-pentagonal" matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q.
Download DTPLQT2 + dependencies [TGZ] [ZIP] [TXT]
!> !> DTPLQT2 computes a LQ a factorization of a real !> matrix C, which is composed of a triangular block A and pentagonal block B, !> using the compact WY representation for Q. !>
[in] | M | !> M is INTEGER !> The total number of rows of the matrix B. !> M >= 0. !> |
[in] | N | !> N is INTEGER !> The number of columns of the matrix B, and the order of !> the triangular matrix A. !> N >= 0. !> |
[in] | L | !> L is INTEGER !> The number of rows of the lower trapezoidal part of B. !> MIN(M,N) >= L >= 0. See Further Details. !> |
[in,out] | A | !> A is DOUBLE PRECISION array, dimension (LDA,M) !> On entry, the lower triangular M-by-M matrix A. !> On exit, the elements on and below the diagonal of the array !> contain the lower triangular matrix L. !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> |
[in,out] | B | !> B is DOUBLE PRECISION array, dimension (LDB,N) !> On entry, the pentagonal M-by-N matrix B. The first N-L columns !> are rectangular, and the last L columns are lower trapezoidal. !> On exit, B contains the pentagonal matrix V. See Further Details. !> |
[in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,M). !> |
[out] | T | !> T is DOUBLE PRECISION array, dimension (LDT,M) !> The N-by-N upper triangular factor T of the block reflector. !> See Further Details. !> |
[in] | LDT | !> LDT is INTEGER !> The leading dimension of the array T. LDT >= max(1,M) !> |
[out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> !> The input matrix C is a M-by-(M+N) matrix !> !> C = [ A ][ B ] !> !> !> where A is an lower triangular M-by-M matrix, and B is M-by-N pentagonal !> matrix consisting of a M-by-(N-L) rectangular matrix B1 left of a M-by-L !> upper trapezoidal matrix B2: !> !> B = [ B1 ][ B2 ] !> [ B1 ] <- M-by-(N-L) rectangular !> [ B2 ] <- M-by-L lower trapezoidal. !> !> The lower trapezoidal matrix B2 consists of the first L columns of a !> N-by-N lower triangular matrix, where 0 <= L <= MIN(M,N). If L=0, !> B is rectangular M-by-N; if M=L=N, B is lower triangular. !> !> The matrix W stores the elementary reflectors H(i) in the i-th row !> above the diagonal (of A) in the M-by-(M+N) input matrix C !> !> C = [ A ][ B ] !> [ A ] <- lower triangular M-by-M !> [ B ] <- M-by-N pentagonal !> !> so that W can be represented as !> !> W = [ I ][ V ] !> [ I ] <- identity, M-by-M !> [ V ] <- M-by-N, same form as B. !> !> Thus, all of information needed for W is contained on exit in B, which !> we call V above. Note that V has the same form as B; that is, !> !> W = [ V1 ][ V2 ] !> [ V1 ] <- M-by-(N-L) rectangular !> [ V2 ] <- M-by-L lower trapezoidal. !> !> The rows of V represent the vectors which define the H(i)'s. !> The (M+N)-by-(M+N) block reflector H is then given by !> !> H = I - W**T * T * W !> !> where W^H is the conjugate transpose of W and T is the upper triangular !> factor of the block reflector. !>
Definition at line 174 of file dtplqt2.f.