174 SUBROUTINE dtplqt2( M, N, L, A, LDA, B, LDB, T, LDT, INFO )
181 INTEGER INFO, LDA, LDB, LDT, N, M, L
184 DOUBLE PRECISION A( LDA, * ), B( LDB, * ), T( LDT, * )
190 DOUBLE PRECISION ONE, ZERO
191 parameter( one = 1.0, zero = 0.0 )
194 INTEGER I, J, P, MP, NP
195 DOUBLE PRECISION ALPHA
210 ELSE IF( n.LT.0 )
THEN
212 ELSE IF( l.LT.0 .OR. l.GT.min(m,n) )
THEN
214 ELSE IF( lda.LT.max( 1, m ) )
THEN
216 ELSE IF( ldb.LT.max( 1, m ) )
THEN
218 ELSE IF( ldt.LT.max( 1, m ) )
THEN
222 CALL xerbla(
'DTPLQT2', -info )
228 IF( n.EQ.0 .OR. m.EQ.0 )
RETURN
235 CALL dlarfg( p+1, a( i, i ), b( i, 1 ), ldb, t( 1, i ) )
241 t( m, j ) = (a( i+j, i ))
243 CALL dgemv(
'N', m-i, p, one, b( i+1, 1 ), ldb,
244 $ b( i, 1 ), ldb, one, t( m, 1 ), ldt )
250 a( i+j, i ) = a( i+j, i ) + alpha*(t( m, j ))
252 CALL dger( m-i, p, alpha, t( m, 1 ), ldt,
253 $ b( i, 1 ), ldb, b( i+1, 1 ), ldb )
273 t( i, j ) = alpha*b( i, n-l+j )
275 CALL dtrmv(
'L',
'N',
'N', p, b( 1, np ), ldb,
280 CALL dgemv(
'N', i-1-p, l, alpha, b( mp, np ), ldb,
281 $ b( i, np ), ldb, zero, t( i,mp ), ldt )
285 CALL dgemv(
'N', i-1, n-l, alpha, b, ldb, b( i, 1 ), ldb,
286 $ one, t( i, 1 ), ldt )
290 CALL dtrmv(
'L',
'T',
'N', i-1, t, ldt, t( i, 1 ), ldt )
294 t( i, i ) = t( 1, i )
subroutine dgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
DGEMV
subroutine dtplqt2(m, n, l, a, lda, b, ldb, t, ldt, info)
DTPLQT2 computes a LQ factorization of a real or complex "triangular-pentagonal" matrix,...