LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ claswlq()

subroutine claswlq ( integer  m,
integer  n,
integer  mb,
integer  nb,
complex, dimension( lda, * )  a,
integer  lda,
complex, dimension( ldt, *)  t,
integer  ldt,
complex, dimension( * )  work,
integer  lwork,
integer  info 
)

CLASWLQ

Purpose:
 CLASWLQ computes a blocked Tall-Skinny LQ factorization of
 a complex M-by-N matrix A for M <= N:

    A = ( L 0 ) *  Q,

 where:

    Q is a n-by-N orthogonal matrix, stored on exit in an implicit
    form in the elements above the diagonal of the array A and in
    the elements of the array T;
    L is a lower-triangular M-by-M matrix stored on exit in
    the elements on and below the diagonal of the array A.
    0 is a M-by-(N-M) zero matrix, if M < N, and is not stored.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= M >= 0.
[in]MB
          MB is INTEGER
          The row block size to be used in the blocked QR.
          M >= MB >= 1
[in]NB
          NB is INTEGER
          The column block size to be used in the blocked QR.
          NB > 0.
[in,out]A
          A is COMPLEX array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, the elements on and below the diagonal
          of the array contain the N-by-N lower triangular matrix L;
          the elements above the diagonal represent Q by the rows
          of blocked V (see Further Details).
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
[out]T
          T is COMPLEX array,
          dimension (LDT, N * Number_of_row_blocks)
          where Number_of_row_blocks = CEIL((N-M)/(NB-M))
          The blocked upper triangular block reflectors stored in compact form
          as a sequence of upper triangular blocks.
          See Further Details below.
[in]LDT
          LDT is INTEGER
          The leading dimension of the array T.  LDT >= MB.
[out]WORK
         (workspace) COMPLEX array, dimension (MAX(1,LWORK))
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.  LWORK >= MB*M.
          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
 Short-Wide LQ (SWLQ) performs LQ by a sequence of orthogonal transformations,
 representing Q as a product of other orthogonal matrices
   Q = Q(1) * Q(2) * . . . * Q(k)
 where each Q(i) zeros out upper diagonal entries of a block of NB rows of A:
   Q(1) zeros out the upper diagonal entries of rows 1:NB of A
   Q(2) zeros out the bottom MB-N rows of rows [1:M,NB+1:2*NB-M] of A
   Q(3) zeros out the bottom MB-N rows of rows [1:M,2*NB-M+1:3*NB-2*M] of A
   . . .

 Q(1) is computed by GELQT, which represents Q(1) by Householder vectors
 stored under the diagonal of rows 1:MB of A, and by upper triangular
 block reflectors, stored in array T(1:LDT,1:N).
 For more information see Further Details in GELQT.

 Q(i) for i>1 is computed by TPLQT, which represents Q(i) by Householder vectors
 stored in columns [(i-1)*(NB-M)+M+1:i*(NB-M)+M] of A, and by upper triangular
 block reflectors, stored in array T(1:LDT,(i-1)*M+1:i*M).
 The last Q(k) may use fewer rows.
 For more information see Further Details in TPQRT.

 For more details of the overall algorithm, see the description of
 Sequential TSQR in Section 2.2 of [1].

 [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
     J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
     SIAM J. Sci. Comput, vol. 34, no. 1, 2012

Definition at line 165 of file claswlq.f.

167*
168* -- LAPACK computational routine --
169* -- LAPACK is a software package provided by Univ. of Tennessee, --
170* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
171*
172* .. Scalar Arguments ..
173 INTEGER INFO, LDA, M, N, MB, NB, LWORK, LDT
174* ..
175* .. Array Arguments ..
176 COMPLEX A( LDA, * ), WORK( * ), T( LDT, *)
177* ..
178*
179* =====================================================================
180*
181* ..
182* .. Local Scalars ..
183 LOGICAL LQUERY
184 INTEGER I, II, KK, CTR
185* ..
186* .. EXTERNAL FUNCTIONS ..
187 LOGICAL LSAME
188 INTEGER ILAENV
189 REAL SROUNDUP_LWORK
190 EXTERNAL lsame, ilaenv, sroundup_lwork
191* .. EXTERNAL SUBROUTINES ..
192 EXTERNAL cgelqt, ctplqt, xerbla
193* .. INTRINSIC FUNCTIONS ..
194 INTRINSIC max, min, mod
195* ..
196* .. EXECUTABLE STATEMENTS ..
197*
198* TEST THE INPUT ARGUMENTS
199*
200 info = 0
201*
202 lquery = ( lwork.EQ.-1 )
203*
204 IF( m.LT.0 ) THEN
205 info = -1
206 ELSE IF( n.LT.0 .OR. n.LT.m ) THEN
207 info = -2
208 ELSE IF( mb.LT.1 .OR. ( mb.GT.m .AND. m.GT.0 )) THEN
209 info = -3
210 ELSE IF( nb.LE.0 ) THEN
211 info = -4
212 ELSE IF( lda.LT.max( 1, m ) ) THEN
213 info = -6
214 ELSE IF( ldt.LT.mb ) THEN
215 info = -8
216 ELSE IF( ( lwork.LT.m*mb) .AND. (.NOT.lquery) ) THEN
217 info = -10
218 END IF
219 IF( info.EQ.0) THEN
220 work(1) = sroundup_lwork(mb*m)
221 END IF
222*
223 IF( info.NE.0 ) THEN
224 CALL xerbla( 'CLASWLQ', -info )
225 RETURN
226 ELSE IF (lquery) THEN
227 RETURN
228 END IF
229*
230* Quick return if possible
231*
232 IF( min(m,n).EQ.0 ) THEN
233 RETURN
234 END IF
235*
236* The LQ Decomposition
237*
238 IF((m.GE.n).OR.(nb.LE.m).OR.(nb.GE.n)) THEN
239 CALL cgelqt( m, n, mb, a, lda, t, ldt, work, info)
240 RETURN
241 END IF
242*
243 kk = mod((n-m),(nb-m))
244 ii=n-kk+1
245*
246* Compute the LQ factorization of the first block A(1:M,1:NB)
247*
248 CALL cgelqt( m, nb, mb, a(1,1), lda, t, ldt, work, info)
249 ctr = 1
250*
251 DO i = nb+1, ii-nb+m , (nb-m)
252*
253* Compute the QR factorization of the current block A(1:M,I:I+NB-M)
254*
255 CALL ctplqt( m, nb-m, 0, mb, a(1,1), lda, a( 1, i ),
256 $ lda, t(1,ctr*m+1),
257 $ ldt, work, info )
258 ctr = ctr + 1
259 END DO
260*
261* Compute the QR factorization of the last block A(1:M,II:N)
262*
263 IF (ii.LE.n) THEN
264 CALL ctplqt( m, kk, 0, mb, a(1,1), lda, a( 1, ii ),
265 $ lda, t(1,ctr*m+1), ldt,
266 $ work, info )
267 END IF
268*
269 work( 1 ) = sroundup_lwork(m * mb)
270 RETURN
271*
272* End of CLASWLQ
273*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine cgelqt(m, n, mb, a, lda, t, ldt, work, info)
CGELQT
Definition cgelqt.f:124
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:162
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
subroutine ctplqt(m, n, l, mb, a, lda, b, ldb, t, ldt, work, info)
CTPLQT
Definition ctplqt.f:174
Here is the call graph for this function:
Here is the caller graph for this function: