141 $ LDAF, IPIV, C, CAPPLY,
142 $ INFO, WORK, RWORK )
151 INTEGER n, lda, ldaf, info
155 COMPLEX*16 a( lda, * ), af( ldaf, * ), work( * )
156 DOUBLE PRECISION c( * ), rwork( * )
164 DOUBLE PRECISION ainvnm, anorm, tmp
178 INTRINSIC abs, max, real, dimag
181 DOUBLE PRECISION cabs1
184 cabs1( zdum ) = abs( dble( zdum ) ) + abs( dimag( zdum ) )
190 notrans =
lsame( trans,
'N' )
191 IF ( .NOT. notrans .AND. .NOT.
lsame( trans,
'T' ) .AND. .NOT.
192 $
lsame( trans,
'C' ) )
THEN
194 ELSE IF( n.LT.0 )
THEN
196 ELSE IF( lda.LT.max( 1, n ) )
THEN
198 ELSE IF( ldaf.LT.max( 1, n ) )
THEN
202 CALL xerbla(
'ZLA_GERCOND_C', -info )
214 tmp = tmp + cabs1( a( i, j ) ) / c( j )
218 tmp = tmp + cabs1( a( i, j ) )
222 anorm = max( anorm, tmp )
229 tmp = tmp + cabs1( a( j, i ) ) / c( j )
233 tmp = tmp + cabs1( a( j, i ) )
237 anorm = max( anorm, tmp )
246 ELSE IF( anorm .EQ. 0.0d+0 )
THEN
256 CALL zlacn2( n, work( n+1 ), work, ainvnm, kase, isave )
263 work( i ) = work( i ) * rwork( i )
267 CALL zgetrs(
'No transpose', n, 1, af, ldaf, ipiv,
270 CALL zgetrs(
'Conjugate transpose', n, 1, af, ldaf, ipiv,
278 work( i ) = work( i ) * c( i )
287 work( i ) = work( i ) * c( i )
292 CALL zgetrs(
'Conjugate transpose', n, 1, af, ldaf, ipiv,
295 CALL zgetrs(
'No transpose', n, 1, af, ldaf, ipiv,
302 work( i ) = work( i ) * rwork( i )
310 IF( ainvnm .NE. 0.0d+0 )
subroutine xerbla(srname, info)
subroutine zgetrs(trans, n, nrhs, a, lda, ipiv, b, ldb, info)
ZGETRS
double precision function zla_gercond_c(trans, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork)
ZLA_GERCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for general matrices.
subroutine zlacn2(n, v, x, est, kase, isave)
ZLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
logical function lsame(ca, cb)
LSAME