LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
|
double precision function zla_gercond_c | ( | character | trans, |
integer | n, | ||
complex*16, dimension( lda, * ) | a, | ||
integer | lda, | ||
complex*16, dimension( ldaf, * ) | af, | ||
integer | ldaf, | ||
integer, dimension( * ) | ipiv, | ||
double precision, dimension( * ) | c, | ||
logical | capply, | ||
integer | info, | ||
complex*16, dimension( * ) | work, | ||
double precision, dimension( * ) | rwork | ||
) |
ZLA_GERCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for general matrices.
Download ZLA_GERCOND_C + dependencies [TGZ] [ZIP] [TXT]
ZLA_GERCOND_C computes the infinity norm condition number of op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector.
[in] | TRANS | TRANS is CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate Transpose = Transpose) |
[in] | N | N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. |
[in] | A | A is COMPLEX*16 array, dimension (LDA,N) On entry, the N-by-N matrix A |
[in] | LDA | LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). |
[in] | AF | AF is COMPLEX*16 array, dimension (LDAF,N) The factors L and U from the factorization A = P*L*U as computed by ZGETRF. |
[in] | LDAF | LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N). |
[in] | IPIV | IPIV is INTEGER array, dimension (N) The pivot indices from the factorization A = P*L*U as computed by ZGETRF; row i of the matrix was interchanged with row IPIV(i). |
[in] | C | C is DOUBLE PRECISION array, dimension (N) The vector C in the formula op(A) * inv(diag(C)). |
[in] | CAPPLY | CAPPLY is LOGICAL If .TRUE. then access the vector C in the formula above. |
[out] | INFO | INFO is INTEGER = 0: Successful exit. i > 0: The ith argument is invalid. |
[out] | WORK | WORK is COMPLEX*16 array, dimension (2*N). Workspace. |
[out] | RWORK | RWORK is DOUBLE PRECISION array, dimension (N). Workspace. |
Definition at line 140 of file zla_gercond_c.f.