LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
clahrd.f
Go to the documentation of this file.
1*> \brief \b CLAHRD reduces the first nb columns of a general rectangular matrix A so that elements below the k-th subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformation to the unreduced part of A.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CLAHRD + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clahrd.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clahrd.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clahrd.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE CLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
22*
23* .. Scalar Arguments ..
24* INTEGER K, LDA, LDT, LDY, N, NB
25* ..
26* .. Array Arguments ..
27* COMPLEX A( LDA, * ), T( LDT, NB ), TAU( NB ),
28* $ Y( LDY, NB )
29* ..
30*
31*
32*> \par Purpose:
33* =============
34*>
35*> \verbatim
36*>
37*> This routine is deprecated and has been replaced by routine CLAHR2.
38*>
39*> CLAHRD reduces the first NB columns of a complex general n-by-(n-k+1)
40*> matrix A so that elements below the k-th subdiagonal are zero. The
41*> reduction is performed by a unitary similarity transformation
42*> Q**H * A * Q. The routine returns the matrices V and T which determine
43*> Q as a block reflector I - V*T*V**H, and also the matrix Y = A * V * T.
44*> \endverbatim
45*
46* Arguments:
47* ==========
48*
49*> \param[in] N
50*> \verbatim
51*> N is INTEGER
52*> The order of the matrix A.
53*> \endverbatim
54*>
55*> \param[in] K
56*> \verbatim
57*> K is INTEGER
58*> The offset for the reduction. Elements below the k-th
59*> subdiagonal in the first NB columns are reduced to zero.
60*> \endverbatim
61*>
62*> \param[in] NB
63*> \verbatim
64*> NB is INTEGER
65*> The number of columns to be reduced.
66*> \endverbatim
67*>
68*> \param[in,out] A
69*> \verbatim
70*> A is COMPLEX array, dimension (LDA,N-K+1)
71*> On entry, the n-by-(n-k+1) general matrix A.
72*> On exit, the elements on and above the k-th subdiagonal in
73*> the first NB columns are overwritten with the corresponding
74*> elements of the reduced matrix; the elements below the k-th
75*> subdiagonal, with the array TAU, represent the matrix Q as a
76*> product of elementary reflectors. The other columns of A are
77*> unchanged. See Further Details.
78*> \endverbatim
79*>
80*> \param[in] LDA
81*> \verbatim
82*> LDA is INTEGER
83*> The leading dimension of the array A. LDA >= max(1,N).
84*> \endverbatim
85*>
86*> \param[out] TAU
87*> \verbatim
88*> TAU is COMPLEX array, dimension (NB)
89*> The scalar factors of the elementary reflectors. See Further
90*> Details.
91*> \endverbatim
92*>
93*> \param[out] T
94*> \verbatim
95*> T is COMPLEX array, dimension (LDT,NB)
96*> The upper triangular matrix T.
97*> \endverbatim
98*>
99*> \param[in] LDT
100*> \verbatim
101*> LDT is INTEGER
102*> The leading dimension of the array T. LDT >= NB.
103*> \endverbatim
104*>
105*> \param[out] Y
106*> \verbatim
107*> Y is COMPLEX array, dimension (LDY,NB)
108*> The n-by-nb matrix Y.
109*> \endverbatim
110*>
111*> \param[in] LDY
112*> \verbatim
113*> LDY is INTEGER
114*> The leading dimension of the array Y. LDY >= max(1,N).
115*> \endverbatim
116*
117* Authors:
118* ========
119*
120*> \author Univ. of Tennessee
121*> \author Univ. of California Berkeley
122*> \author Univ. of Colorado Denver
123*> \author NAG Ltd.
124*
125*> \ingroup lahrd
126*
127*> \par Further Details:
128* =====================
129*>
130*> \verbatim
131*>
132*> The matrix Q is represented as a product of nb elementary reflectors
133*>
134*> Q = H(1) H(2) . . . H(nb).
135*>
136*> Each H(i) has the form
137*>
138*> H(i) = I - tau * v * v**H
139*>
140*> where tau is a complex scalar, and v is a complex vector with
141*> v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
142*> A(i+k+1:n,i), and tau in TAU(i).
143*>
144*> The elements of the vectors v together form the (n-k+1)-by-nb matrix
145*> V which is needed, with T and Y, to apply the transformation to the
146*> unreduced part of the matrix, using an update of the form:
147*> A := (I - V*T*V**H) * (A - Y*V**H).
148*>
149*> The contents of A on exit are illustrated by the following example
150*> with n = 7, k = 3 and nb = 2:
151*>
152*> ( a h a a a )
153*> ( a h a a a )
154*> ( a h a a a )
155*> ( h h a a a )
156*> ( v1 h a a a )
157*> ( v1 v2 a a a )
158*> ( v1 v2 a a a )
159*>
160*> where a denotes an element of the original matrix A, h denotes a
161*> modified element of the upper Hessenberg matrix H, and vi denotes an
162*> element of the vector defining H(i).
163*> \endverbatim
164*>
165* =====================================================================
166 SUBROUTINE clahrd( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
167*
168* -- LAPACK auxiliary routine --
169* -- LAPACK is a software package provided by Univ. of Tennessee, --
170* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
171*
172* .. Scalar Arguments ..
173 INTEGER K, LDA, LDT, LDY, N, NB
174* ..
175* .. Array Arguments ..
176 COMPLEX A( LDA, * ), T( LDT, NB ), TAU( NB ),
177 $ Y( LDY, NB )
178* ..
179*
180* =====================================================================
181*
182* .. Parameters ..
183 COMPLEX ZERO, ONE
184 parameter( zero = ( 0.0e+0, 0.0e+0 ),
185 $ one = ( 1.0e+0, 0.0e+0 ) )
186* ..
187* .. Local Scalars ..
188 INTEGER I
189 COMPLEX EI
190* ..
191* .. External Subroutines ..
192 EXTERNAL caxpy, ccopy, cgemv, clacgv, clarfg, cscal,
193 $ ctrmv
194* ..
195* .. Intrinsic Functions ..
196 INTRINSIC min
197* ..
198* .. Executable Statements ..
199*
200* Quick return if possible
201*
202 IF( n.LE.1 )
203 $ RETURN
204*
205 DO 10 i = 1, nb
206 IF( i.GT.1 ) THEN
207*
208* Update A(1:n,i)
209*
210* Compute i-th column of A - Y * V**H
211*
212 CALL clacgv( i-1, a( k+i-1, 1 ), lda )
213 CALL cgemv( 'No transpose', n, i-1, -one, y, ldy,
214 $ a( k+i-1, 1 ), lda, one, a( 1, i ), 1 )
215 CALL clacgv( i-1, a( k+i-1, 1 ), lda )
216*
217* Apply I - V * T**H * V**H to this column (call it b) from the
218* left, using the last column of T as workspace
219*
220* Let V = ( V1 ) and b = ( b1 ) (first I-1 rows)
221* ( V2 ) ( b2 )
222*
223* where V1 is unit lower triangular
224*
225* w := V1**H * b1
226*
227 CALL ccopy( i-1, a( k+1, i ), 1, t( 1, nb ), 1 )
228 CALL ctrmv( 'Lower', 'Conjugate transpose', 'Unit', i-1,
229 $ a( k+1, 1 ), lda, t( 1, nb ), 1 )
230*
231* w := w + V2**H *b2
232*
233 CALL cgemv( 'Conjugate transpose', n-k-i+1, i-1, one,
234 $ a( k+i, 1 ), lda, a( k+i, i ), 1, one,
235 $ t( 1, nb ), 1 )
236*
237* w := T**H *w
238*
239 CALL ctrmv( 'Upper', 'Conjugate transpose', 'Non-unit', i-1,
240 $ t, ldt, t( 1, nb ), 1 )
241*
242* b2 := b2 - V2*w
243*
244 CALL cgemv( 'No transpose', n-k-i+1, i-1, -one, a( k+i, 1 ),
245 $ lda, t( 1, nb ), 1, one, a( k+i, i ), 1 )
246*
247* b1 := b1 - V1*w
248*
249 CALL ctrmv( 'Lower', 'No transpose', 'Unit', i-1,
250 $ a( k+1, 1 ), lda, t( 1, nb ), 1 )
251 CALL caxpy( i-1, -one, t( 1, nb ), 1, a( k+1, i ), 1 )
252*
253 a( k+i-1, i-1 ) = ei
254 END IF
255*
256* Generate the elementary reflector H(i) to annihilate
257* A(k+i+1:n,i)
258*
259 ei = a( k+i, i )
260 CALL clarfg( n-k-i+1, ei, a( min( k+i+1, n ), i ), 1,
261 $ tau( i ) )
262 a( k+i, i ) = one
263*
264* Compute Y(1:n,i)
265*
266 CALL cgemv( 'No transpose', n, n-k-i+1, one, a( 1, i+1 ), lda,
267 $ a( k+i, i ), 1, zero, y( 1, i ), 1 )
268 CALL cgemv( 'Conjugate transpose', n-k-i+1, i-1, one,
269 $ a( k+i, 1 ), lda, a( k+i, i ), 1, zero, t( 1, i ),
270 $ 1 )
271 CALL cgemv( 'No transpose', n, i-1, -one, y, ldy, t( 1, i ), 1,
272 $ one, y( 1, i ), 1 )
273 CALL cscal( n, tau( i ), y( 1, i ), 1 )
274*
275* Compute T(1:i,i)
276*
277 CALL cscal( i-1, -tau( i ), t( 1, i ), 1 )
278 CALL ctrmv( 'Upper', 'No transpose', 'Non-unit', i-1, t, ldt,
279 $ t( 1, i ), 1 )
280 t( i, i ) = tau( i )
281*
282 10 CONTINUE
283 a( k+nb, nb ) = ei
284*
285 RETURN
286*
287* End of CLAHRD
288*
289 END
subroutine clahrd(n, k, nb, a, lda, tau, t, ldt, y, ldy)
CLAHRD reduces the first nb columns of a general rectangular matrix A so that elements below the k-th...
Definition clahrd.f:167
subroutine caxpy(n, ca, cx, incx, cy, incy)
CAXPY
Definition caxpy.f:88
subroutine ccopy(n, cx, incx, cy, incy)
CCOPY
Definition ccopy.f:81
subroutine cgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
CGEMV
Definition cgemv.f:160
subroutine clacgv(n, x, incx)
CLACGV conjugates a complex vector.
Definition clacgv.f:74
subroutine clarfg(n, alpha, x, incx, tau)
CLARFG generates an elementary reflector (Householder matrix).
Definition clarfg.f:106
subroutine cscal(n, ca, cx, incx)
CSCAL
Definition cscal.f:78
subroutine ctrmv(uplo, trans, diag, n, a, lda, x, incx)
CTRMV
Definition ctrmv.f:147