LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ clahrd()

subroutine clahrd ( integer n,
integer k,
integer nb,
complex, dimension( lda, * ) a,
integer lda,
complex, dimension( nb ) tau,
complex, dimension( ldt, nb ) t,
integer ldt,
complex, dimension( ldy, nb ) y,
integer ldy )

CLAHRD reduces the first nb columns of a general rectangular matrix A so that elements below the k-th subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformation to the unreduced part of A.

Download CLAHRD + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> This routine is deprecated and has been replaced by routine CLAHR2.
!>
!> CLAHRD reduces the first NB columns of a complex general n-by-(n-k+1)
!> matrix A so that elements below the k-th subdiagonal are zero. The
!> reduction is performed by a unitary similarity transformation
!> Q**H * A * Q. The routine returns the matrices V and T which determine
!> Q as a block reflector I - V*T*V**H, and also the matrix Y = A * V * T.
!> 
Parameters
[in]N
!>          N is INTEGER
!>          The order of the matrix A.
!> 
[in]K
!>          K is INTEGER
!>          The offset for the reduction. Elements below the k-th
!>          subdiagonal in the first NB columns are reduced to zero.
!> 
[in]NB
!>          NB is INTEGER
!>          The number of columns to be reduced.
!> 
[in,out]A
!>          A is COMPLEX array, dimension (LDA,N-K+1)
!>          On entry, the n-by-(n-k+1) general matrix A.
!>          On exit, the elements on and above the k-th subdiagonal in
!>          the first NB columns are overwritten with the corresponding
!>          elements of the reduced matrix; the elements below the k-th
!>          subdiagonal, with the array TAU, represent the matrix Q as a
!>          product of elementary reflectors. The other columns of A are
!>          unchanged. See Further Details.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[out]TAU
!>          TAU is COMPLEX array, dimension (NB)
!>          The scalar factors of the elementary reflectors. See Further
!>          Details.
!> 
[out]T
!>          T is COMPLEX array, dimension (LDT,NB)
!>          The upper triangular matrix T.
!> 
[in]LDT
!>          LDT is INTEGER
!>          The leading dimension of the array T.  LDT >= NB.
!> 
[out]Y
!>          Y is COMPLEX array, dimension (LDY,NB)
!>          The n-by-nb matrix Y.
!> 
[in]LDY
!>          LDY is INTEGER
!>          The leading dimension of the array Y. LDY >= max(1,N).
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  The matrix Q is represented as a product of nb elementary reflectors
!>
!>     Q = H(1) H(2) . . . H(nb).
!>
!>  Each H(i) has the form
!>
!>     H(i) = I - tau * v * v**H
!>
!>  where tau is a complex scalar, and v is a complex vector with
!>  v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
!>  A(i+k+1:n,i), and tau in TAU(i).
!>
!>  The elements of the vectors v together form the (n-k+1)-by-nb matrix
!>  V which is needed, with T and Y, to apply the transformation to the
!>  unreduced part of the matrix, using an update of the form:
!>  A := (I - V*T*V**H) * (A - Y*V**H).
!>
!>  The contents of A on exit are illustrated by the following example
!>  with n = 7, k = 3 and nb = 2:
!>
!>     ( a   h   a   a   a )
!>     ( a   h   a   a   a )
!>     ( a   h   a   a   a )
!>     ( h   h   a   a   a )
!>     ( v1  h   a   a   a )
!>     ( v1  v2  a   a   a )
!>     ( v1  v2  a   a   a )
!>
!>  where a denotes an element of the original matrix A, h denotes a
!>  modified element of the upper Hessenberg matrix H, and vi denotes an
!>  element of the vector defining H(i).
!> 

Definition at line 164 of file clahrd.f.

165*
166* -- LAPACK auxiliary routine --
167* -- LAPACK is a software package provided by Univ. of Tennessee, --
168* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
169*
170* .. Scalar Arguments ..
171 INTEGER K, LDA, LDT, LDY, N, NB
172* ..
173* .. Array Arguments ..
174 COMPLEX A( LDA, * ), T( LDT, NB ), TAU( NB ),
175 $ Y( LDY, NB )
176* ..
177*
178* =====================================================================
179*
180* .. Parameters ..
181 COMPLEX ZERO, ONE
182 parameter( zero = ( 0.0e+0, 0.0e+0 ),
183 $ one = ( 1.0e+0, 0.0e+0 ) )
184* ..
185* .. Local Scalars ..
186 INTEGER I
187 COMPLEX EI
188* ..
189* .. External Subroutines ..
190 EXTERNAL caxpy, ccopy, cgemv, clacgv, clarfg, cscal,
191 $ ctrmv
192* ..
193* .. Intrinsic Functions ..
194 INTRINSIC min
195* ..
196* .. Executable Statements ..
197*
198* Quick return if possible
199*
200 IF( n.LE.1 )
201 $ RETURN
202*
203 DO 10 i = 1, nb
204 IF( i.GT.1 ) THEN
205*
206* Update A(1:n,i)
207*
208* Compute i-th column of A - Y * V**H
209*
210 CALL clacgv( i-1, a( k+i-1, 1 ), lda )
211 CALL cgemv( 'No transpose', n, i-1, -one, y, ldy,
212 $ a( k+i-1, 1 ), lda, one, a( 1, i ), 1 )
213 CALL clacgv( i-1, a( k+i-1, 1 ), lda )
214*
215* Apply I - V * T**H * V**H to this column (call it b) from the
216* left, using the last column of T as workspace
217*
218* Let V = ( V1 ) and b = ( b1 ) (first I-1 rows)
219* ( V2 ) ( b2 )
220*
221* where V1 is unit lower triangular
222*
223* w := V1**H * b1
224*
225 CALL ccopy( i-1, a( k+1, i ), 1, t( 1, nb ), 1 )
226 CALL ctrmv( 'Lower', 'Conjugate transpose', 'Unit', i-1,
227 $ a( k+1, 1 ), lda, t( 1, nb ), 1 )
228*
229* w := w + V2**H *b2
230*
231 CALL cgemv( 'Conjugate transpose', n-k-i+1, i-1, one,
232 $ a( k+i, 1 ), lda, a( k+i, i ), 1, one,
233 $ t( 1, nb ), 1 )
234*
235* w := T**H *w
236*
237 CALL ctrmv( 'Upper', 'Conjugate transpose', 'Non-unit',
238 $ i-1, t, ldt, t( 1, nb ), 1 )
239*
240* b2 := b2 - V2*w
241*
242 CALL cgemv( 'No transpose', n-k-i+1, i-1, -one,
243 $ a( k+i, 1 ), lda, t( 1, nb ), 1, one,
244 $ a( k+i, i ), 1 )
245*
246* b1 := b1 - V1*w
247*
248 CALL ctrmv( 'Lower', 'No transpose', 'Unit', i-1,
249 $ a( k+1, 1 ), lda, t( 1, nb ), 1 )
250 CALL caxpy( i-1, -one, t( 1, nb ), 1, a( k+1, i ), 1 )
251*
252 a( k+i-1, i-1 ) = ei
253 END IF
254*
255* Generate the elementary reflector H(i) to annihilate
256* A(k+i+1:n,i)
257*
258 ei = a( k+i, i )
259 CALL clarfg( n-k-i+1, ei, a( min( k+i+1, n ), i ), 1,
260 $ tau( i ) )
261 a( k+i, i ) = one
262*
263* Compute Y(1:n,i)
264*
265 CALL cgemv( 'No transpose', n, n-k-i+1, one, a( 1, i+1 ),
266 $ lda, a( k+i, i ), 1, zero, y( 1, i ), 1 )
267 CALL cgemv( 'Conjugate transpose', n-k-i+1, i-1, one,
268 $ a( k+i, 1 ), lda, a( k+i, i ), 1, zero, t( 1, i ),
269 $ 1 )
270 CALL cgemv( 'No transpose', n, i-1, -one, y, ldy,
271 $ t( 1, i ), 1, one, y( 1, i ), 1 )
272 CALL cscal( n, tau( i ), y( 1, i ), 1 )
273*
274* Compute T(1:i,i)
275*
276 CALL cscal( i-1, -tau( i ), t( 1, i ), 1 )
277 CALL ctrmv( 'Upper', 'No transpose', 'Non-unit', i-1, t,
278 $ ldt, t( 1, i ), 1 )
279 t( i, i ) = tau( i )
280*
281 10 CONTINUE
282 a( k+nb, nb ) = ei
283*
284 RETURN
285*
286* End of CLAHRD
287*
subroutine caxpy(n, ca, cx, incx, cy, incy)
CAXPY
Definition caxpy.f:88
subroutine ccopy(n, cx, incx, cy, incy)
CCOPY
Definition ccopy.f:81
subroutine cgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
CGEMV
Definition cgemv.f:160
subroutine clacgv(n, x, incx)
CLACGV conjugates a complex vector.
Definition clacgv.f:72
subroutine clarfg(n, alpha, x, incx, tau)
CLARFG generates an elementary reflector (Householder matrix).
Definition clarfg.f:104
subroutine cscal(n, ca, cx, incx)
CSCAL
Definition cscal.f:78
subroutine ctrmv(uplo, trans, diag, n, a, lda, x, incx)
CTRMV
Definition ctrmv.f:147
Here is the call graph for this function: