LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ sgges()

subroutine sgges ( character jobvsl,
character jobvsr,
character sort,
external selctg,
integer n,
real, dimension( lda, * ) a,
integer lda,
real, dimension( ldb, * ) b,
integer ldb,
integer sdim,
real, dimension( * ) alphar,
real, dimension( * ) alphai,
real, dimension( * ) beta,
real, dimension( ldvsl, * ) vsl,
integer ldvsl,
real, dimension( ldvsr, * ) vsr,
integer ldvsr,
real, dimension( * ) work,
integer lwork,
logical, dimension( * ) bwork,
integer info )

SGGES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices

Download SGGES + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SGGES computes for a pair of N-by-N real nonsymmetric matrices (A,B),
!> the generalized eigenvalues, the generalized real Schur form (S,T),
!> optionally, the left and/or right matrices of Schur vectors (VSL and
!> VSR). This gives the generalized Schur factorization
!>
!>          (A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T )
!>
!> Optionally, it also orders the eigenvalues so that a selected cluster
!> of eigenvalues appears in the leading diagonal blocks of the upper
!> quasi-triangular matrix S and the upper triangular matrix T.The
!> leading columns of VSL and VSR then form an orthonormal basis for the
!> corresponding left and right eigenspaces (deflating subspaces).
!>
!> (If only the generalized eigenvalues are needed, use the driver
!> SGGEV instead, which is faster.)
!>
!> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
!> or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
!> usually represented as the pair (alpha,beta), as there is a
!> reasonable interpretation for beta=0 or both being zero.
!>
!> A pair of matrices (S,T) is in generalized real Schur form if T is
!> upper triangular with non-negative diagonal and S is block upper
!> triangular with 1-by-1 and 2-by-2 blocks.  1-by-1 blocks correspond
!> to real generalized eigenvalues, while 2-by-2 blocks of S will be
!>  by making the corresponding elements of T have the
!> form:
!>         [  a  0  ]
!>         [  0  b  ]
!>
!> and the pair of corresponding 2-by-2 blocks in S and T will have a
!> complex conjugate pair of generalized eigenvalues.
!>
!> 
Parameters
[in]JOBVSL
!>          JOBVSL is CHARACTER*1
!>          = 'N':  do not compute the left Schur vectors;
!>          = 'V':  compute the left Schur vectors.
!> 
[in]JOBVSR
!>          JOBVSR is CHARACTER*1
!>          = 'N':  do not compute the right Schur vectors;
!>          = 'V':  compute the right Schur vectors.
!> 
[in]SORT
!>          SORT is CHARACTER*1
!>          Specifies whether or not to order the eigenvalues on the
!>          diagonal of the generalized Schur form.
!>          = 'N':  Eigenvalues are not ordered;
!>          = 'S':  Eigenvalues are ordered (see SELCTG);
!> 
[in]SELCTG
!>          SELCTG is a LOGICAL FUNCTION of three REAL arguments
!>          SELCTG must be declared EXTERNAL in the calling subroutine.
!>          If SORT = 'N', SELCTG is not referenced.
!>          If SORT = 'S', SELCTG is used to select eigenvalues to sort
!>          to the top left of the Schur form.
!>          An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if
!>          SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
!>          one of a complex conjugate pair of eigenvalues is selected,
!>          then both complex eigenvalues are selected.
!>
!>          Note that in the ill-conditioned case, a selected complex
!>          eigenvalue may no longer satisfy SELCTG(ALPHAR(j),ALPHAI(j),
!>          BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2
!>          in this case.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrices A, B, VSL, and VSR.  N >= 0.
!> 
[in,out]A
!>          A is REAL array, dimension (LDA, N)
!>          On entry, the first of the pair of matrices.
!>          On exit, A has been overwritten by its generalized Schur
!>          form S.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of A.  LDA >= max(1,N).
!> 
[in,out]B
!>          B is REAL array, dimension (LDB, N)
!>          On entry, the second of the pair of matrices.
!>          On exit, B has been overwritten by its generalized Schur
!>          form T.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of B.  LDB >= max(1,N).
!> 
[out]SDIM
!>          SDIM is INTEGER
!>          If SORT = 'N', SDIM = 0.
!>          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
!>          for which SELCTG is true.  (Complex conjugate pairs for which
!>          SELCTG is true for either eigenvalue count as 2.)
!> 
[out]ALPHAR
!>          ALPHAR is REAL array, dimension (N)
!> 
[out]ALPHAI
!>          ALPHAI is REAL array, dimension (N)
!> 
[out]BETA
!>          BETA is REAL array, dimension (N)
!>          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
!>          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i,
!>          and  BETA(j),j=1,...,N are the diagonals of the complex Schur
!>          form (S,T) that would result if the 2-by-2 diagonal blocks of
!>          the real Schur form of (A,B) were further reduced to
!>          triangular form using 2-by-2 complex unitary transformations.
!>          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
!>          positive, then the j-th and (j+1)-st eigenvalues are a
!>          complex conjugate pair, with ALPHAI(j+1) negative.
!>
!>          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
!>          may easily over- or underflow, and BETA(j) may even be zero.
!>          Thus, the user should avoid naively computing the ratio.
!>          However, ALPHAR and ALPHAI will be always less than and
!>          usually comparable with norm(A) in magnitude, and BETA always
!>          less than and usually comparable with norm(B).
!> 
[out]VSL
!>          VSL is REAL array, dimension (LDVSL,N)
!>          If JOBVSL = 'V', VSL will contain the left Schur vectors.
!>          Not referenced if JOBVSL = 'N'.
!> 
[in]LDVSL
!>          LDVSL is INTEGER
!>          The leading dimension of the matrix VSL. LDVSL >=1, and
!>          if JOBVSL = 'V', LDVSL >= N.
!> 
[out]VSR
!>          VSR is REAL array, dimension (LDVSR,N)
!>          If JOBVSR = 'V', VSR will contain the right Schur vectors.
!>          Not referenced if JOBVSR = 'N'.
!> 
[in]LDVSR
!>          LDVSR is INTEGER
!>          The leading dimension of the matrix VSR. LDVSR >= 1, and
!>          if JOBVSR = 'V', LDVSR >= N.
!> 
[out]WORK
!>          WORK is REAL array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>          If N = 0, LWORK >= 1, else LWORK >= max(8*N,6*N+16).
!>          For good performance , LWORK must generally be larger.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 
[out]BWORK
!>          BWORK is LOGICAL array, dimension (N)
!>          Not referenced if SORT = 'N'.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!>          = 1,...,N:
!>                The QZ iteration failed.  (A,B) are not in Schur
!>                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
!>                be correct for j=INFO+1,...,N.
!>          > N:  =N+1: other than QZ iteration failed in SHGEQZ.
!>                =N+2: after reordering, roundoff changed values of
!>                      some complex eigenvalues so that leading
!>                      eigenvalues in the Generalized Schur form no
!>                      longer satisfy SELCTG=.TRUE.  This could also
!>                      be caused due to scaling.
!>                =N+3: reordering failed in STGSEN.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 279 of file sgges.f.

283*
284* -- LAPACK driver routine --
285* -- LAPACK is a software package provided by Univ. of Tennessee, --
286* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
287*
288* .. Scalar Arguments ..
289 CHARACTER JOBVSL, JOBVSR, SORT
290 INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
291* ..
292* .. Array Arguments ..
293 LOGICAL BWORK( * )
294 REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
295 $ B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
296 $ VSR( LDVSR, * ), WORK( * )
297* ..
298* .. Function Arguments ..
299 LOGICAL SELCTG
300 EXTERNAL selctg
301* ..
302*
303* =====================================================================
304*
305* .. Parameters ..
306 REAL ZERO, ONE
307 parameter( zero = 0.0e+0, one = 1.0e+0 )
308* ..
309* .. Local Scalars ..
310 LOGICAL CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
311 $ LQUERY, LST2SL, WANTST
312 INTEGER I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT,
313 $ ILO, IP, IRIGHT, IROWS, ITAU, IWRK, MAXWRK,
314 $ MINWRK
315 REAL ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL,
316 $ PVSR, SAFMAX, SAFMIN, SMLNUM
317* ..
318* .. Local Arrays ..
319 INTEGER IDUM( 1 )
320 REAL DIF( 2 )
321* ..
322* .. External Subroutines ..
323 EXTERNAL sgeqrf, sggbak, sggbal, sgghrd, shgeqz,
324 $ slacpy,
326* ..
327* .. External Functions ..
328 LOGICAL LSAME
329 INTEGER ILAENV
330 REAL SLAMCH, SLANGE, SROUNDUP_LWORK
331 EXTERNAL lsame, ilaenv, slamch, slange,
333* ..
334* .. Intrinsic Functions ..
335 INTRINSIC abs, max, sqrt
336* ..
337* .. Executable Statements ..
338*
339* Decode the input arguments
340*
341 IF( lsame( jobvsl, 'N' ) ) THEN
342 ijobvl = 1
343 ilvsl = .false.
344 ELSE IF( lsame( jobvsl, 'V' ) ) THEN
345 ijobvl = 2
346 ilvsl = .true.
347 ELSE
348 ijobvl = -1
349 ilvsl = .false.
350 END IF
351*
352 IF( lsame( jobvsr, 'N' ) ) THEN
353 ijobvr = 1
354 ilvsr = .false.
355 ELSE IF( lsame( jobvsr, 'V' ) ) THEN
356 ijobvr = 2
357 ilvsr = .true.
358 ELSE
359 ijobvr = -1
360 ilvsr = .false.
361 END IF
362*
363 wantst = lsame( sort, 'S' )
364*
365* Test the input arguments
366*
367 info = 0
368 lquery = ( lwork.EQ.-1 )
369 IF( ijobvl.LE.0 ) THEN
370 info = -1
371 ELSE IF( ijobvr.LE.0 ) THEN
372 info = -2
373 ELSE IF( ( .NOT.wantst ) .AND.
374 $ ( .NOT.lsame( sort, 'N' ) ) ) THEN
375 info = -3
376 ELSE IF( n.LT.0 ) THEN
377 info = -5
378 ELSE IF( lda.LT.max( 1, n ) ) THEN
379 info = -7
380 ELSE IF( ldb.LT.max( 1, n ) ) THEN
381 info = -9
382 ELSE IF( ldvsl.LT.1 .OR. ( ilvsl .AND. ldvsl.LT.n ) ) THEN
383 info = -15
384 ELSE IF( ldvsr.LT.1 .OR. ( ilvsr .AND. ldvsr.LT.n ) ) THEN
385 info = -17
386 END IF
387*
388* Compute workspace
389* (Note: Comments in the code beginning "Workspace:" describe the
390* minimal amount of workspace needed at that point in the code,
391* as well as the preferred amount for good performance.
392* NB refers to the optimal block size for the immediately
393* following subroutine, as returned by ILAENV.)
394*
395 IF( info.EQ.0 ) THEN
396 IF( n.GT.0 )THEN
397 minwrk = max( 8*n, 6*n + 16 )
398 maxwrk = minwrk - n +
399 $ n*ilaenv( 1, 'SGEQRF', ' ', n, 1, n, 0 )
400 maxwrk = max( maxwrk, minwrk - n +
401 $ n*ilaenv( 1, 'SORMQR', ' ', n, 1, n, -1 ) )
402 IF( ilvsl ) THEN
403 maxwrk = max( maxwrk, minwrk - n +
404 $ n*ilaenv( 1, 'SORGQR', ' ', n, 1, n,
405 $ -1 ) )
406 END IF
407 ELSE
408 minwrk = 1
409 maxwrk = 1
410 END IF
411 work( 1 ) = sroundup_lwork(maxwrk)
412*
413 IF( lwork.LT.minwrk .AND. .NOT.lquery )
414 $ info = -19
415 END IF
416*
417 IF( info.NE.0 ) THEN
418 CALL xerbla( 'SGGES ', -info )
419 RETURN
420 ELSE IF( lquery ) THEN
421 RETURN
422 END IF
423*
424* Quick return if possible
425*
426 IF( n.EQ.0 ) THEN
427 sdim = 0
428 RETURN
429 END IF
430*
431* Get machine constants
432*
433 eps = slamch( 'P' )
434 safmin = slamch( 'S' )
435 safmax = one / safmin
436 smlnum = sqrt( safmin ) / eps
437 bignum = one / smlnum
438*
439* Scale A if max element outside range [SMLNUM,BIGNUM]
440*
441 anrm = slange( 'M', n, n, a, lda, work )
442 ilascl = .false.
443 IF( anrm.GT.zero .AND. anrm.LT.smlnum ) THEN
444 anrmto = smlnum
445 ilascl = .true.
446 ELSE IF( anrm.GT.bignum ) THEN
447 anrmto = bignum
448 ilascl = .true.
449 END IF
450 IF( ilascl )
451 $ CALL slascl( 'G', 0, 0, anrm, anrmto, n, n, a, lda, ierr )
452*
453* Scale B if max element outside range [SMLNUM,BIGNUM]
454*
455 bnrm = slange( 'M', n, n, b, ldb, work )
456 ilbscl = .false.
457 IF( bnrm.GT.zero .AND. bnrm.LT.smlnum ) THEN
458 bnrmto = smlnum
459 ilbscl = .true.
460 ELSE IF( bnrm.GT.bignum ) THEN
461 bnrmto = bignum
462 ilbscl = .true.
463 END IF
464 IF( ilbscl )
465 $ CALL slascl( 'G', 0, 0, bnrm, bnrmto, n, n, b, ldb, ierr )
466*
467* Permute the matrix to make it more nearly triangular
468* (Workspace: need 6*N + 2*N space for storing balancing factors)
469*
470 ileft = 1
471 iright = n + 1
472 iwrk = iright + n
473 CALL sggbal( 'P', n, a, lda, b, ldb, ilo, ihi, work( ileft ),
474 $ work( iright ), work( iwrk ), ierr )
475*
476* Reduce B to triangular form (QR decomposition of B)
477* (Workspace: need N, prefer N*NB)
478*
479 irows = ihi + 1 - ilo
480 icols = n + 1 - ilo
481 itau = iwrk
482 iwrk = itau + irows
483 CALL sgeqrf( irows, icols, b( ilo, ilo ), ldb, work( itau ),
484 $ work( iwrk ), lwork+1-iwrk, ierr )
485*
486* Apply the orthogonal transformation to matrix A
487* (Workspace: need N, prefer N*NB)
488*
489 CALL sormqr( 'L', 'T', irows, icols, irows, b( ilo, ilo ), ldb,
490 $ work( itau ), a( ilo, ilo ), lda, work( iwrk ),
491 $ lwork+1-iwrk, ierr )
492*
493* Initialize VSL
494* (Workspace: need N, prefer N*NB)
495*
496 IF( ilvsl ) THEN
497 CALL slaset( 'Full', n, n, zero, one, vsl, ldvsl )
498 IF( irows.GT.1 ) THEN
499 CALL slacpy( 'L', irows-1, irows-1, b( ilo+1, ilo ), ldb,
500 $ vsl( ilo+1, ilo ), ldvsl )
501 END IF
502 CALL sorgqr( irows, irows, irows, vsl( ilo, ilo ), ldvsl,
503 $ work( itau ), work( iwrk ), lwork+1-iwrk, ierr )
504 END IF
505*
506* Initialize VSR
507*
508 IF( ilvsr )
509 $ CALL slaset( 'Full', n, n, zero, one, vsr, ldvsr )
510*
511* Reduce to generalized Hessenberg form
512* (Workspace: none needed)
513*
514 CALL sgghrd( jobvsl, jobvsr, n, ilo, ihi, a, lda, b, ldb, vsl,
515 $ ldvsl, vsr, ldvsr, ierr )
516*
517* Perform QZ algorithm, computing Schur vectors if desired
518* (Workspace: need N)
519*
520 iwrk = itau
521 CALL shgeqz( 'S', jobvsl, jobvsr, n, ilo, ihi, a, lda, b, ldb,
522 $ alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr,
523 $ work( iwrk ), lwork+1-iwrk, ierr )
524 IF( ierr.NE.0 ) THEN
525 IF( ierr.GT.0 .AND. ierr.LE.n ) THEN
526 info = ierr
527 ELSE IF( ierr.GT.n .AND. ierr.LE.2*n ) THEN
528 info = ierr - n
529 ELSE
530 info = n + 1
531 END IF
532 GO TO 40
533 END IF
534*
535* Sort eigenvalues ALPHA/BETA if desired
536* (Workspace: need 4*N+16 )
537*
538 sdim = 0
539 IF( wantst ) THEN
540*
541* Undo scaling on eigenvalues before SELCTGing
542*
543 IF( ilascl ) THEN
544 CALL slascl( 'G', 0, 0, anrmto, anrm, n, 1, alphar, n,
545 $ ierr )
546 CALL slascl( 'G', 0, 0, anrmto, anrm, n, 1, alphai, n,
547 $ ierr )
548 END IF
549 IF( ilbscl )
550 $ CALL slascl( 'G', 0, 0, bnrmto, bnrm, n, 1, beta, n,
551 $ ierr )
552*
553* Select eigenvalues
554*
555 DO 10 i = 1, n
556 bwork( i ) = selctg( alphar( i ), alphai( i ),
557 $ beta( i ) )
558 10 CONTINUE
559*
560 CALL stgsen( 0, ilvsl, ilvsr, bwork, n, a, lda, b, ldb,
561 $ alphar,
562 $ alphai, beta, vsl, ldvsl, vsr, ldvsr, sdim, pvsl,
563 $ pvsr, dif, work( iwrk ), lwork-iwrk+1, idum, 1,
564 $ ierr )
565 IF( ierr.EQ.1 )
566 $ info = n + 3
567*
568 END IF
569*
570* Apply back-permutation to VSL and VSR
571* (Workspace: none needed)
572*
573 IF( ilvsl )
574 $ CALL sggbak( 'P', 'L', n, ilo, ihi, work( ileft ),
575 $ work( iright ), n, vsl, ldvsl, ierr )
576*
577 IF( ilvsr )
578 $ CALL sggbak( 'P', 'R', n, ilo, ihi, work( ileft ),
579 $ work( iright ), n, vsr, ldvsr, ierr )
580*
581* Check if unscaling would cause over/underflow, if so, rescale
582* (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of
583* B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I)
584*
585 IF( ilascl )THEN
586 DO 50 i = 1, n
587 IF( alphai( i ).NE.zero ) THEN
588 IF( ( alphar( i )/safmax ).GT.( anrmto/anrm ) .OR.
589 $ ( safmin/alphar( i ) ).GT.( anrm/anrmto ) ) THEN
590 work( 1 ) = abs( a( i, i )/alphar( i ) )
591 beta( i ) = beta( i )*work( 1 )
592 alphar( i ) = alphar( i )*work( 1 )
593 alphai( i ) = alphai( i )*work( 1 )
594 ELSE IF( ( alphai( i )/safmax ).GT.( anrmto/anrm ) .OR.
595 $ ( safmin/alphai( i ) ).GT.( anrm/anrmto ) ) THEN
596 work( 1 ) = abs( a( i, i+1 )/alphai( i ) )
597 beta( i ) = beta( i )*work( 1 )
598 alphar( i ) = alphar( i )*work( 1 )
599 alphai( i ) = alphai( i )*work( 1 )
600 END IF
601 END IF
602 50 CONTINUE
603 END IF
604*
605 IF( ilbscl )THEN
606 DO 60 i = 1, n
607 IF( alphai( i ).NE.zero ) THEN
608 IF( ( beta( i )/safmax ).GT.( bnrmto/bnrm ) .OR.
609 $ ( safmin/beta( i ) ).GT.( bnrm/bnrmto ) ) THEN
610 work( 1 ) = abs(b( i, i )/beta( i ))
611 beta( i ) = beta( i )*work( 1 )
612 alphar( i ) = alphar( i )*work( 1 )
613 alphai( i ) = alphai( i )*work( 1 )
614 END IF
615 END IF
616 60 CONTINUE
617 END IF
618*
619* Undo scaling
620*
621 IF( ilascl ) THEN
622 CALL slascl( 'H', 0, 0, anrmto, anrm, n, n, a, lda, ierr )
623 CALL slascl( 'G', 0, 0, anrmto, anrm, n, 1, alphar, n,
624 $ ierr )
625 CALL slascl( 'G', 0, 0, anrmto, anrm, n, 1, alphai, n,
626 $ ierr )
627 END IF
628*
629 IF( ilbscl ) THEN
630 CALL slascl( 'U', 0, 0, bnrmto, bnrm, n, n, b, ldb, ierr )
631 CALL slascl( 'G', 0, 0, bnrmto, bnrm, n, 1, beta, n, ierr )
632 END IF
633*
634 IF( wantst ) THEN
635*
636* Check if reordering is correct
637*
638 lastsl = .true.
639 lst2sl = .true.
640 sdim = 0
641 ip = 0
642 DO 30 i = 1, n
643 cursl = selctg( alphar( i ), alphai( i ), beta( i ) )
644 IF( alphai( i ).EQ.zero ) THEN
645 IF( cursl )
646 $ sdim = sdim + 1
647 ip = 0
648 IF( cursl .AND. .NOT.lastsl )
649 $ info = n + 2
650 ELSE
651 IF( ip.EQ.1 ) THEN
652*
653* Last eigenvalue of conjugate pair
654*
655 cursl = cursl .OR. lastsl
656 lastsl = cursl
657 IF( cursl )
658 $ sdim = sdim + 2
659 ip = -1
660 IF( cursl .AND. .NOT.lst2sl )
661 $ info = n + 2
662 ELSE
663*
664* First eigenvalue of conjugate pair
665*
666 ip = 1
667 END IF
668 END IF
669 lst2sl = lastsl
670 lastsl = cursl
671 30 CONTINUE
672*
673 END IF
674*
675 40 CONTINUE
676*
677 work( 1 ) = sroundup_lwork(maxwrk)
678*
679 RETURN
680*
681* End of SGGES
682*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine sgeqrf(m, n, a, lda, tau, work, lwork, info)
SGEQRF
Definition sgeqrf.f:144
subroutine sggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)
SGGBAK
Definition sggbak.f:146
subroutine sggbal(job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale, work, info)
SGGBAL
Definition sggbal.f:175
subroutine sgghrd(compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq, z, ldz, info)
SGGHRD
Definition sgghrd.f:206
subroutine shgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alphar, alphai, beta, q, ldq, z, ldz, work, lwork, info)
SHGEQZ
Definition shgeqz.f:303
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:160
subroutine slacpy(uplo, m, n, a, lda, b, ldb)
SLACPY copies all or part of one two-dimensional array to another.
Definition slacpy.f:101
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function slange(norm, m, n, a, lda, work)
SLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition slange.f:112
subroutine slascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)
SLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition slascl.f:142
subroutine slaset(uplo, m, n, alpha, beta, a, lda)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition slaset.f:108
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
subroutine stgsen(ijob, wantq, wantz, select, n, a, lda, b, ldb, alphar, alphai, beta, q, ldq, z, ldz, m, pl, pr, dif, work, lwork, iwork, liwork, info)
STGSEN
Definition stgsen.f:450
subroutine sorgqr(m, n, k, a, lda, tau, work, lwork, info)
SORGQR
Definition sorgqr.f:126
subroutine sormqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
SORMQR
Definition sormqr.f:166
Here is the call graph for this function:
Here is the caller graph for this function: